====== Explainable Artificial Intelligence ====== * Course ID: WFAIS.IF-XG325.0 * Room: G-1-05 * Teachers: * Lectures: [[https://szymon.bobek.re|dr inż. Szymon Bobek]] (SBK) * Labs: [[https://szymon.bobek.re|dr inż. Szymon Bobek]] (SBK) ====== Lectures ====== * **[07.10.2024]** [SBK] {{ :courses:xai:1_introduction_to_explainable_artificial_intelligence_2024.pdf |Introduction to xAI}} * **[14.10.2024]** [SBK] {{ :courses:xai:2_inherently_interpretable_models.pdf |Inherently interpretable models I}} * **[21.10.2024]** [SBK] {{ :courses:xai:3_inherently_interpretable_models.pdf |Inherently interpretable models II}} * **[28.10.2024]** [SBK] {{ :courses:xai:4_surrogate_models.pdf |Global model-agnostic explanations and surrogate models}} * **[4.11.2024]** [SBK] {{ :courses:xai:5_local_model-agnostic_explanations.pdf |Local model-agnostic explanations I}} * **[18.11.2024]** [SBK] {{ :courses:xai:6_local_model-agnostic_explanations.pdf |Local model-agnostic explanations II}} * **[25.11.2024]** [SBK] Hands-on programming assignments * **[2.12.2024]** [SBK] {{ :courses:xai:7_conterfactual_and_adversarial_explanations.pdf |Counterfactual explanations}} * **[9.12.2024]** [SBK] {{ :courses:xai:8_evaluation_methods.pdf |Evaluation of XAI algorithms}} * **[16.12.2024]** [SBK] {{ :courses:xai:9_explainability_in_neural_networks.pdf |Explanations in Neural Networks}} * **[13.01.2025]** [SBK] {{ :courses:xai:10_industrial_challenges_for_xai.pdf |Challenges of XAI in Industrial applications}} * **[20.01.2025]** [SBK] Hands-on programming assignments ====== Labs ====== * **[07.10.2023]** [SBK] [[.:lab1|Introduction to working environment, basics of data manipulation and visualization and bias identification]] * **[14.10.2023]** [SBK] [[.:lab2|Inherently interpretable models]] * **[21.10.2023]** [SBK] [[.:lab3|Inherently interpretable models II]] * **[28.10.2023]** [SBK] [[.:lab4|Global model-agnostic approaches I]] * **[04.11.2023]** [SBK] [[.:lab5|Local model-agnostic approaches I]] * **[18.11.2023]** [SBK] [[.:lab6|Local model-agnostic approaches II]] * **[25.11.2023]** Test I * **[25.11.2023]** [SBK] [[.:p1_2024|Programming Assignment I]] * **[02.12.2023]** [SBK] [[.:lab7|Counterfactual explanations]] * **[09.12.2023]** [MTM] [[.:lab8|Evaluation of XAI methods]] * **[16.12.2024]** [BMK] [[.:lab9|Explainability in DNN]] * **[13.01.2024]** [SBK] [[.:p2_2024|Programming Assignment II]] * **[20.01.2024]** Test II ====== Grading rules ====== * 100 EXP is 100% of the total points (MAX) from the lab. This consists of: * 2x25 EXP - two tests, covering material from the laboratories and lecture * 2x25 EXP - two assignments carried out in groups (2-5 people) during the laboratory * The above result may be increased by any "pluses" for activity during classes (1 plus = 1 EXP) * Advantages are taken into account only when passing the exam within the basic deadline. * All laboratory projects must be submitted on time. * The mark for late projects will be multiplied by 0.5 (i.e. a maximum of half the number of points can be obtained for a late project). * You must obtain at least 60% of points in all tests. * Two unexcused absences are allowed. * Each subsequent absence results in a deduction of 10 EXP. ===== Grading scale: ===== * >= 90 EXP – bdb * >= 80 EXP – db+ * >= 70 EXP – db * >= 60 EXP – dst+ * >= 50 EXP – dst * < 50 EXP – ndst ====== References ====== * [[https://christophm.github.io/interpretable-ml-book/|Interpretable Machine Learning]]