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SOURCES OF KNOWLEDGE

Experts
Knowledge bases
Data mining & machine learning

Data enrichment



EX P E RTS The primary source

of knowledge




DOMAIN EXPERTS

People want to collaborate

There is a need for methods and
tools that work

It's not only about KRR methods

Design

Population

Evolution

Tool users

Application
users

Reuse

Past

KE expert with domain
expert access

KE expert learns domain

KE expert heavily
involved

Trained in Computer
Science

Well understood group

Well thought out

Present

KE expert paired with domain
expert(s) and community

KE and domain experts
determine the vocabulary

KE expert involved in tools
customization for domain experts
Trained in Domain Sciences

Diverse and evolving group

Expect the unexpected

Table from Deborah L. McGuinness (2017), Ontologies for the Modern Age (ISWC 2017 Keynote).
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From today's featured article

In the news

The Runaway Scrape was the
1836 escape of Texas residents
from the encroaching Mexican
Army of Operations under the
command of Antonio Lopez de
Santa Anna during the Texas

Feplicas of the "Twin Sisters”, cannons used in
the Battle of San Jacinto

WIKIPEDIA

« American singer and songwriter Prince
is found dead at the age of 57.

» At least 64 people are killed and mare
than 340 others injured in an attack in
Kabul, Afghanistan.

« Ethiopians Lemi Berhanu Hayle and

You've probably heard of it

before...




CROWDSOURCING

Human-labeled data, e.g.:
Google reCAPTCHA

Amazon Mechanical Turk

User feedback and reviews
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KNOWLEDGE BASES

Knowledge graphs, e.g., Google Knowledge Graph, Wikidata, DBpedia
Ontolgies, e.g., WordNet, Cyc
Scientific databases (e.g., chemistry, genomics, bio-sciences, agro-sciences)

APIs / Open Dataq, e.g., OpenWeatherMap, Google Maps, Hugging Face
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egend

LINKED OPEN DATA

Provides wider contexi

o Wikidata, DBpedia

O Interconnections between bases
= better knowledge!
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Knowledge Graphs 2020, Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology

Slide from Knowledge Graphs course by prof. Harald Sack & Mehwish Alam (openHPI, 2020).


https://open.hpi.de/courses/knowledgegraphs2020
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R E AS O N I N G Deductive Reasoning Inductive Reasoning Abductive Reasoning

* Paern
‘

General Specific Specific General Incomplete Best

Assumption

Deductive R.:

Theory Best Guess

Rule-based systems, logic
Inductive R.:

Machine learning

Rule Conclusion Observation Conclusion Dbservatio Prediction

Abductive R.:

Problem-solving, diagnosis

Source: N. Van Otten (2024), KRR In Al Made Simple
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MACHINE LEARNING

KG embeddings
for learning relationships

Predict missing links, e.g. if two entities
should be connected

|dentify new relationships, e.g., a
drug's potential use in medicine

Classify entities, e.g., grouping similar
concepts together

Deep Learning
for learning abstract representations

Natural Language Processing, e.qg., for
text summarization

Forecasting in time series, e.g., for
learning economic patterns



MACHINE LEARNING

Reinforcement learning
for discovering strategies

Learning optimal strategies through ftrial
and error approach

AlphaGo Zero discovered new
strategies in Go

Physics simulations

Generative Al
for creating new knowledge

Use with special care!l



DATA MINING

Sequential Pattern Mining Process Mining
Finds patterns in sequences of events Analyzes event logs to optimize
or actions over time business workflows
Common techniques: PrefixSpan, Common techniques: Alpha Miner,
GSP (Generalized Sequential Pattern) Heuristic Miner
Used in: stock market prediction, Used in: business process automation

clickstream analysis



DATA MINING

Text Mining Sentiment Mining
Extracts insights from unstructured text Analyzes emotions and opinions from
data text data
Common techniques: TF-IDF, topic Common techniques: Transformers (e.qg.,
modeling (e.g., LDA, BERT), Named BERT), lexicon-based techniques (e.g.,
Entity Recognition SentiWordNet)
Used in: fake news detection, chatbots, Used in: social media monitoring, brand

search engines reputation management



DATA MINING

Cluster Mining Graph Mining
Groups similar data points together Extracts patterns and structures from
graphs

Common techniques: K-Means,
Hierarchical Clustering, DBSCAN Common techniques: Node?2Vec,

: . PageRank
Used in: customer segmentation,

anomaly detection Used in: social network analysis,
knowledge graphs, fraud detection



DATA MINING

Semantic Data Mining Rule Mining
Integrates domain knowledge, Extracts if-then rules leading to
ontologies and structured data to discovering hidden correlations and
exact meaningful insights causality
Understands the context instead of Common techniques: Apriori algorithm,
just finding statistical patterns (like FP-growth algorithm

th ining techni
other mining techniques) Can be combined with Semantic Data

Common techniques: ontology-based Mining to verify rules against domain
mining, semantic similarity measures, knowledge or to provide better
knowledge graph embeddings explanations (based on domain

knowledge)



BLACK SWAN

Extracts raw data and creates knowledge by,
e.g., outlier detection and rule mining

Extraction
WWw
events,l
statistics
Parsing

L4
Schema Matching

L4
Data Cleansing

Rule Mining

events, outliers

Rule Detection

y

Pruning

N~

Events
Statistics
Outliers

Rules

Analysis

statistics

Outlier
Detection
Procedures

Visualization

outliers with events
and rules

Source: Architecture | Black Swan Events


http://blackswanevents.org/?page_id=179

D AT A E N R | c H M E N 'I' Enhance, improve or augment the

data with additional information




DATA INTEGRATION: MASHUPS

Dynamic Mashup

SPARQL Endpoint )} RESTful AP
iIServe

| Web Service A | I Web Service B I

Source: B. Endres-Niggemeyer (201 3), The Mashup Ecosystem in Semantic Mashups (Springer).


https://doi.org/10.1007/978-3-642-36403-7_1
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Source: K. Tollmar et al. (2012). Mobile health mashups in: IEEE Pervasive Health.


https://doi.org/10.4108/icst.pervasivehealth.2012.248698

DATA ENRICHMENT

Data cleaning and standardization: removes errors, duplicates, etc
Data imputation: fills missing data

Data augmentation: creates additional data, e.g. by rotating images in CV



CHEXRISH

Lack of metadata in digital libraries = it
is difficult to find specific documents

Our approach:

Step 1: Use semantic segmentation to
identify various parts of the document

Step 2: Use segment-specific models to
generate more detailed metadata

Source: J. Ignatowicz (2024),
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https://geist.re/aira:start

KNOWLEDGE IS EVERYWHERE

Experts: domain experts, crowdsourcing
Knowledge bases & reasoning

Machine learning and data mining
techniques for discovering new knowledge
from structured and unstructured data and
information

Manual /semi-automatic data enrichment
with contextual information




THANK YOU FOR
YOUR ATTENTION!

GEIST Research Group: hitps: //geist.re /

Krzysztof Kutt: https: / /krzysztof.kutt.pl/

This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.
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CALM
ASK
QUESTIONS!

keep-calm.net
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