
© Copyright IBM Corporation 2000 Trademarks
Bash by example, Part 1 Page 1 of 10

Bash by example, Part 1
Fundamental programming in the Bourne again shell (bash)

Daniel Robbins
President and CEO
Gentoo Technologies, Inc.

March 01, 2000

By learning how to program in the bash scripting language, your day-to-day interaction with
Linux will become more fun and productive, and you'll be able to build upon those standard
UNIX constructs (like pipelines and redirection) that you already know and love. In this three-
part series, Daniel Robbins will teach you how to program in bash by example. He'll cover the
absolute basics (making this an excellent series for beginners) and bring in more advanced
features as the series proceeds.

You might wonder why you ought to learn Bash programming. Well, here are a couple of
compelling reasons:

You're already running it
If you check, you'll probably find that you are running bash right now. Even if you changed your
default shell, bash is probably still running somewhere on your system, because it's the standard
Linux shell and is used for a variety of purposes. Because bash is already running, any additional
bash scripts that you run are inherently memory-efficient because they share memory with any
already-running bash processes. Why load a 500K interpreter if you already are running something
that will do the job, and do it well?

You're already using it
Not only are you already running bash, but you're actually interacting with bash on a daily basis.
It's always there, so it makes sense to learn how to use it to its fullest potential. Doing so will make
your bash experience more fun and productive. But why should you learn bash programming?
Easy, because you already think in terms of running commands, CPing files, and piping and
redirecting output. Shouldn't you learn a language that allows you to use and build upon these
powerful time-saving constructs you already know how to use? Command shells unlock the
potential of a UNIX system, and bash is the Linux shell. It's the high-level glue between you and
the machine. Grow in your knowledge of bash, and you'll automatically increase your productivity
under Linux and UNIX -- it's that simple.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Bash by example, Part 1 Page 2 of 10

Bash confusion
Learning bash the wrong way can be a very confusing process. Many newbies type "man bash"
to view the bash man page, only to be confronted with a very terse and technical description of
shell functionality. Others type "info bash" (to view the GNU info documentation), causing either the
man page to be redisplayed, or (if they are lucky) only slightly more friendly info documentation to
appear.

While this may be somewhat disappointing to novices, the standard bash documentation can't
be all things to all people, and caters towards those already familiar with shell programming
in general. There's definitely a lot of excellent technical information in the man page, but its
helpfulness to beginners is limited.

That's where this series comes in. In it, I'll show you how to actually use bash programming
constructs, so that you will be able to write your own scripts. Instead of technical descriptions,
I'll provide you with explanations in plain English, so that you will know not only what something
does, but when you should actually use it. By the end of this three-part series, you'll be able to
write your own intricate bash scripts, and be at the level where you can comfortably use bash and
supplement your knowledge by reading (and understanding!) the standard bash documentation.
Let's begin.

Environment variables
Under bash and almost all other shells, the user can define environment variables, which are
stored internally as ASCII strings. One of the handiest things about environment variables is that
they are a standard part of the UNIX process model. This means that environment variables
not only are exclusive to shell scripts, but can be used by standard compiled programs as well.
When we "export" an environment variable under bash, any subsequent program that we run can
read our setting, whether it is a shell script or not. A good example is the vipw command, which
normally allows root to edit the system password file. By setting the EDITOR environment variable
to the name of your favorite text editor, you can configure vipw to use it instead of vi, a handy thing
if you are used to xemacs and really dislike vi.

The standard way to define an environment variable under bash is:

$ myvar='This is my environment variable!'

Quoting specifics

For extremely detailed information on how quotes should be used in bash, you may want to
look at the "QUOTING" section in the bash man page. The existence of special character
sequences that get "expanded" (replaced) with other values does complicate how strings are
handled in bash. We will just cover the most often-used quoting functionality in this series.

The above command defined an environment variable called "myvar" and contains the string
"This is my environment variable!". There are several things to notice above: first, there is no
space on either side of the "=" sign; any space will result in an error (try it and see). The second
thing to notice is that while we could have done away with the quotes if we were defining a single

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 1 Page 3 of 10

word, they are necessary when the value of the environment variable is more than a single word
(contains spaces or tabs).

Thirdly, while we can normally use double quotes instead of single quotes, doing so in the above
example would have caused an error. Why? Because using single quotes disables a bash feature
called expansion, where special characters and sequences of characters are replaced with values.
For example, the "!" character is the history expansion character, which bash normally replaces
with a previously-typed command. (We won't be covering history expansion in this series of
articles, because it is not frequently used in bash programming. For more information on it, see
the "HISTORY EXPANSION" section in the bash man page.) While this macro-like functionality
can come in handy, right now we want a literal exclamation point at the end of our environment
variable, rather than a macro.

Now, let's take a look at how one actually uses environment variables. Here's an example:

$ echo $myvar
This is my environment variable!

By preceding the name of our environment variable with a $, we can cause bash to replace it with
the value of myvar. In bash terminology, this is called "variable expansion". But, what if we try the
following:

$ echo foo$myvarbar
foo

We wanted this to echo "fooThis is my environment variable!bar", but it didn't work. What went
wrong? In a nutshell, bash's variable expansion facility in got confused. It couldn't tell whether we
wanted to expand the variable $m, $my, $myvar, $myvarbar, etc. How can we be more explicit and
clearly tell bash what variable we are referring to? Try this:

$ echo foo${myvar}bar
fooThis is my environment variable!bar

As you can see, we can enclose the environment variable name in curly braces when it is not
clearly separated from the surrounding text. While $myvar is faster to type and will work most of
the time, ${myvar} can be parsed correctly in almost any situation. Other than that, they both do
the same thing, and you will see both forms of variable expansion in the rest of this series. You'll
want to remember to use the more explicit curly-brace form when your environment variable is not
isolated from the surrounding text by whitespace (spaces or tabs).

Recall that we also mentioned that we can "export" variables. When we export an environment
variable, it's automatically available in the environment of any subsequently-run script or
executable. Shell scripts can "get to" the environment variable using that shell's built-in
environment-variable support, while C programs can use the getenv() function call. Here's some
example C code that you should type in and compile -- it'll allow us to understand environment
variables from the perspective of C:

developerWorks® ibm.com/developerWorks/

Bash by example, Part 1 Page 4 of 10

myvar.c -- a sample environment variable C program

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 char *myenvvar=getenv("EDITOR");
 printf("The editor environment variable is set to %s\n",myenvvar);
}

Save the above source into a file called myenv.c, and then compile it by issuing the command:

$ gcc myenv.c -o myenv

Now, there will be an executable program in your directory that, when run, will print the value of the
EDITOR environment variable, if any. This is what happens when I run it on my machine:

$./myenv
The editor environment variable is set to (null)

Hmmm... because the EDITOR environment variable was not set to anything, the C program gets
a null string. Let's try setting it to a specific value:

$ EDITOR=xemacs
$./myenv
The editor environment variable is set to (null)

While you might have expected myenv to print the value "xemacs", it didn't quite work, because we
didn't export the EDITOR environment variable. This time, we'll get it working:

$ export EDITOR
$./myenv
The editor environment variable is set to xemacs

So, you have seen with your very own eyes that another process (in this case our example C
program) cannot see the environment variable until it is exported. Incidentally, if you want, you can
define and export an environment variable using one line, as follows:

$ export EDITOR=xemacs

It works identically to the two-line version. This would be a good time to show how to erase an
environment variable by using unset:

$ unset EDITOR
$./myenv
The editor environment variable is set to (null)

dirname and basename

Both dirname and basename do not look at any files or directories on disk; they are purely
string manipulation commands.

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 1 Page 5 of 10

Chopping strings overview
Chopping strings -- that is, splitting an original string into smaller, separate chunk(s) -- is one of
those tasks that is performed daily by your average shell script. Many times, shell scripts need to
take a fully-qualified path, and find the terminating file or directory. While it's possible (and fun!) to
code this in bash, the standard basename UNIX executable performs this extremely well:

$ basename /usr/local/share/doc/foo/foo.txt
foo.txt
$ basename /usr/home/drobbins
drobbins

Basename is quite a handy tool for chopping up strings. It's companion, called dirname, returns the
"other" part of the path that basename throws away:

$ dirname /usr/local/share/doc/foo/foo.txt
/usr/local/share/doc/foo
$ dirname /usr/home/drobbins/
/usr/home

Command substitution
One very handy thing to know is how to create an environment variable that contains the result of
an executable command. This is very easy to do:

$ MYDIR=`dirname /usr/local/share/doc/foo/foo.txt`
$ echo $MYDIR
/usr/local/share/doc/foo

What we did above is called "command substitution". Several things are worth noticing in this
example. On the first line, we simply enclosed the command we wanted to execute in back quotes.
Those are not standard single quotes, but instead come from the keyboard key that normally sits
above the Tab key. We can do exactly the same thing with bash's alternate command substitution
syntax:

$ MYDIR=$(dirname /usr/local/share/doc/foo/foo.txt)
$ echo $MYDIR
/usr/local/share/doc/foo

As you can see, bash provides multiple ways to perform exactly the same thing. Using command
substitution, we can place any command or pipeline of commands in between ` ` or $() and
assign it to an environment variable. Handy stuff! Here's an example of how to use a pipeline with
command substitution:

MYFILES=$(ls /etc | grep pa)
bash-2.03$ echo $MYFILES
pam.d passwd

Chopping strings like a pro
While basename and dirname are great tools, there are times where we may need to perform
more advanced string "chopping" operations than just standard pathname manipulations. When

developerWorks® ibm.com/developerWorks/

Bash by example, Part 1 Page 6 of 10

we need more punch, we can take advantage of bash's advanced built-in variable expansion
functionality. We've already used the standard kind of variable expansion, which looks like this:
${MYVAR}. But bash can also perform some handy string chopping on its own. Take a look at
these examples:

$ MYVAR=foodforthought.jpg
$ echo ${MYVAR##*fo}
rthought.jpg
$ echo ${MYVAR#*fo}
odforthought.jpg

In the first example, we typed ${MYVAR##*fo}. What exactly does this mean? Basically, inside the
${ }, we typed the name of the environment variable, two ##s, and a wildcard ("*fo"). Then, bash
took MYVAR, found the longest substring from the beginning of the string "foodforthought.jpg"
that matched the wildcard "*fo", and chopped it off the beginning of the string. That's a bit hard
to grasp at first, so to get a feel for how this special "##" option works, let's step through how
bash completed this expansion. First, it began searching for substrings at the beginning of
"foodforthought.jpg" that matched the "*fo" wildcard. Here are the substrings that it checked:

f
fo MATCHES *fo
foo
food
foodf
foodfo MATCHES *fo
foodfor
foodfort
foodforth
foodfortho
foodforthou
foodforthoug
foodforthought
foodforthought.j
foodforthought.jp
foodforthought.jpg

After searching the string for matches, you can see that bash found two. It selects the longest
match, removes it from the beginning of the original string, and returns the result.

The second form of variable expansion shown above appears identical to the first, except it uses
only one "#" -- and bash performs an almost identical process. It checks the same set of substrings
as our first example did, except that bash removes the shortest match from our original string, and
returns the result. So, as soon as it checks the "fo" substring, it removes "fo" from our string and
returns "odforthought.jpg".

This may seem extremely cryptic, so I'll show you an easy way to remember this functionality.
When searching for the longest match, use ## (because ## is longer than #). When searching for
the shortest match, use #. See, not that hard to remember at all! Wait, how do you remember that
we are supposed to use the '#' character to remove from the *beginning* of a string? Simple! You
will notice that on a US keyboard, shift-4 is "$", which is the bash variable expansion character.
On the keyboard, immediately to the left of "$" is "#". So, you can see that "#" is "at the beginning"
of "$", and thus (according to our mnemonic), "#" removes characters from the beginning of the

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 1 Page 7 of 10

string. You may wonder how we remove characters from the end of the string. If you guessed that
we use the character immediately to the right of "$" on the US keyboard ("%"), you're right! Here
are some quick examples of how to chop off trailing portions of strings:

$ MYFOO="chickensoup.tar.gz"
$ echo ${MYFOO%%.*}
chickensoup
$ echo ${MYFOO%.*}
chickensoup.tar

As you can see, the % and %% variable expansion options work identically to # and ##, except
they remove the matching wildcard from the end of the string. Note that you don't have to use the
"*" character if you wish to remove a specific substring from the end:

MYFOOD="chickensoup"
$ echo ${MYFOOD%%soup}
chicken

In this example, it doesn't matter whether we use "%%" or "%", since only one match is possible.
And remember, if you forget whether to use "#" or "%", look at the 3, 4, and 5 keys on your
keyboard and figure it out.

We can use another form of variable expansion to select a specific substring, based on a specific
character offset and length. Try typing in the following lines under bash:

$ EXCLAIM=cowabunga
$ echo ${EXCLAIM:0:3}
cow
$ echo ${EXCLAIM:3:7}
abunga

This form of string chopping can come in quite handy; simply specify the character to start from
and the length of the substring, all separated by colons.

Applying string chopping
Now that we've learned all about chopping strings, let's write a simple little shell script. Our script
will accept a single file as an argument, and will print out whether it appears to be a tarball. To
determine if it is a tarball, it will look for the pattern ".tar" at the end of the file. Here it is:

mytar.sh -- a sample script
#!/bin/bash

if ["${1##*.}" = "tar"]
then
 echo This appears to be a tarball.
else
 echo At first glance, this does not appear to be a tarball.
fi

To run this script, enter it into a file called mytar.sh, and type "chmod 755 mytar.sh" to make it
executable. Then, give it a try on a tarball, as follows:

developerWorks® ibm.com/developerWorks/

Bash by example, Part 1 Page 8 of 10

$./mytar.sh thisfile.tar
This appears to be a tarball.
$./mytar.sh thatfile.gz
At first glance, this does not appear to be a tarball.

OK, it works, but it's not very functional. Before we make it more useful, let's take a look at the "if"
statement used above. In it, we have a boolean expression. In bash, the "=" comparison operator
checks for string equality. In bash, all boolean expressions are enclosed in square brackets. But
what does the boolean expression actually test for? Let's take a look at the left side. According
to what we've learned about string chopping, "${1##*.}" will remove the longest match of "*." from
the beginning of the string contained in the environment variable "1", returning the result. This will
cause everything after the last "." in the file to be returned. Obviously, if the file ends in ".tar", we
will get "tar" as a result, and the condition will be true.

You may be wondering what the "1" environment variable is in the first place. Very simple -- $1 is
the first command-line argument to the script, $2 is the second, etc. OK, now that we've reviewed
the function, we can take our first look at "if" statements.

If statements

Like most languages, bash has its own form of conditional. When using them, stick to the
format above; that is, keep the "if" and the "then" on separate lines, and keep the "else" and the
terminating and required "fi" in horizontal alignment with them. This makes the code easier to read
and debug. In addition to the "if,else" form, there are several other forms of "if" statements:

if [condition]
then
 action
fi

This one performs an action only if condition is true, otherwise it performs no action and
continues executing any lines following the "fi".

if [condition]
then
 action
elif [condition2]
then
 action2
.
.
.
elif [condition3]
then

else
 actionx
fi

The above "elif" form will consecutively test each condition and execute the action corresponding
to the first true condition. If none of the conditions are true, it will execute the "else" action, if one is
present, and then continue executing lines following the entire "if,elif,else" statement.

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 1 Page 9 of 10

Next time

Now that we've covered the most basic bash functionality, it's time to pick up the pace and
get ready to write some real scripts. In the next article, I'll cover looping constructs, functions,
namespace, and other essential topics. Then, we'll be ready to write some more complicated
scripts. In the third article, we'll focus almost exclusively on very complex scripts and functions, as
well as several bash script design options. See you then!

Related topics Bash by example, Part 2 GNU Bash

http://www.ibm.com/developerworks/linux/library/l-bash2/index.html
http://www.gnu.org/software/bash/bash.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 1 Page 10 of 10

About the author

Daniel Robbins

Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of
the Gentoo Project, CEO of Gentoo Technologies, Inc., the mentor for the Linux
Advanced Multimedia Project (LAMP), and a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, SuSE Linux Unleashed, and Samba
Unleashed. Daniel has been involved with computers in some fashion since the
second grade, when he was first exposed to the Logo programming language as well
as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel
enjoys spending time with his wife, Mary, who is expecting a child this spring. You can
contact Daniel at drobbins@gentoo.org.

© Copyright IBM Corporation 2000
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.gentoo.org/
mailto:drobbins@gentoo.org
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	You're already running it
	You're already using it
	Bash confusion
	Environment variables
	Chopping strings overview
	Command substitution
	Chopping strings like a pro
	Applying string chopping
	If statements
	Next time
	About the author
	Trademarks

