
© Copyright IBM Corporation 2000, 2013 Trademarks
Bash by example, Part 2 Page 1 of 12

Bash by example, Part 2
More bash programming fundamentals

Daniel Robbins (drobbins@gentoo.org)
President and CEO
Gentoo Technologies, Inc.

18 February 2013
(First published 01 April 2000)

In his introductory article on bash, Daniel Robbins walked you through some of the scripting
language's basic elements and reasons for using bash. In this, the second installment,
Daniel picks up where he left off and looks at bash's basic constructs like conditional (if-then)
statements, looping, and more.
04 Jan 2013 - In response to reader comment, updated information in these sections:
Accepting arguments, Conditional love, String comparison caveats, Looping constructs: "for",
and Functions and namespaces.

18 Feb 2013 - In response to reader comment, updated the Common Bash comparisons table.
In the row with an Operator value of "-f" and Meaning value of "Exists and is directory," changed
Operator value to "-d" and [-f "$myfile"] character string to: [-d "$mydir"].

Let's start with a brief tip on handling command-line arguments, and then look at bash's basic
programming constructs.

Accepting arguments
In the sample program in the introductory article, we used the environment variable "$1", which
referred to the first command-line argument. Similarly, you can use "$2", "$3", etc. to refer to the
second and third arguments passed to your script. Here's an example:

#!/usr/bin/env bash

echo name of script is $0
echo first argument is $1
echo second argument is $2
echo seventeenth argument is ${17}
echo number of arguments is $#

The example is self explanatory except for three small details. First, "$0" will expand to the name
of the script, as called from the command line, second, for arguments 10 and above, you need
to enclose the whole argument number in curly braces, and third, "$#" will expand to the number

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:drobbins@gentoo.org
http://www.ibm.com/developerworks/library/l-bash.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 2 of 12

of arguments passed to the script. Play around with the above script, passing different kinds of
command-line arguments to get the hang of how it works.

Sometimes, it's helpful to refer to all command-line arguments at once. For this purpose, bash
features the "$@" variable, which expands to all command-line parameters separated by spaces.
We'll see an example of its use when we take a look at "for" loops, a bit later in this article.

Bash programming constructs
If you've programmed in a procedural language like C, Pascal, Python, or Perl, then you're familiar
with standard programming constructs like "if" statements, "for" loops, and the like. Bash has its
own versions of most of these standard constructs. In the next several sections, I will introduce
several bash constructs and demonstrate the differences between these constructs and others
you are already familiar with from other programming languages. If you haven't programmed much
before, don't worry. I include enough information and examples so that you can follow the text.

Conditional love
If you've ever programmed any file-related code in C, you know that it requires a significant
amount of effort to see if a particular file is newer than another. That's because C doesn't have any
built-in syntax for performing such a comparison; instead, two stat() calls and two stat structures
must be used to perform the comparison by hand. In contrast, bash has standard file comparison
operators built in, so determining if "/tmp/myfile is readable" is as easy as checking to see if
"$myvar is greater than 4".

The following table lists the most frequently used bash comparison operators. You'll also find an
example of how to use every option correctly. The example is meant to be placed immediately after
the "if". For example:

if [-z "$myvar"]
then
 echo "myvar is not defined"
fi

Note: You must separate the square brackets from other text by a space.

Common Bash comparisons

Operator Meaning Example

-z Zero-length string [-z "$myvar"]

-n Non-zero-length string [-n "$myvar"]

= String equality ["abc" = "$myvar"]

!= String inequality ["abc" != "$myvar"]

-eq Numeric equality [3 -eq "$myinteger"]

-ne Numeric inequality [3 -ne "$myinteger"]

-lt Numeric strict less than [3 -lt "$myinteger"]

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 2 Page 3 of 12

-le Numeric less than or equals [3 -le "$myinteger"]

-gt Numeric strict greater than [3 -gt "$myinteger"]

-ge Numeric greater than or equals [3 -ge "$myinteger"]

-f Exists and is regular file [-f "$myfile"]

-d Exists and is directory [-d "$mydir"]

-nt First file is newer than second one ["$myfile" -nt ~/.bashrc]

-ot First file is older than second one ["$myfile" -ot ~/.bashrc]

Sometimes, there are several different ways that a particular comparison can be made. For
example, the following two snippets of code function identically:

if ["$myvar" -eq 3]
then
 echo "myvar equals 3"
fi

if ["$myvar" = "3"]
then
 echo "myvar equals 3"
fi

If $myvar is an integer, these two comparisons do exactly the same thing, but the first uses
arithmetic comparison operators, while the second uses string comparison operators. If $myvar is
not an integer, then the first comparison will fail with an error.

String comparison caveats
Most of the time, while you can omit the use of double quotes surrounding strings and string
variables, it's not a good idea. Why? Because your code will work perfectly, unless an environment
variable happens to have a space or a tab in it, in which case bash will get confused. Here's an
example of a fouled-up comparison:

if [$myvar = "foo bar oni"]
then
 echo "yes"
fi

In the above example, if myvar equals "foo", the code will work as expected and not print anything.
However, if myvar equals "foo bar oni", the code will fail with the following error:

[: too many arguments

In this case, the spaces in "$myvar" (which equals "foo bar oni") end up confusing bash. After bash
expands "$myvar", it ends up with the following comparison:

[foo bar oni = "foo bar oni"]

Similarly, if myvar is the empty string, you will have too few arguments and the code will fail with
the following error:

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 4 of 12

[: =: unary operator expected

Because the environment variable wasn't placed inside double quotes, bash thinks that you stuffed
too many (or too few) arguments in-between the square brackets. You can easily eliminate this
problem by surrounding the string arguments with double-quotes. Remember, if you get into the
habit of surrounding all string arguments and environment variables with double-quotes, you'll
eliminate many similar programming errors. Here's how the "foo bar oni" comparison should have
been written:

if ["$myvar" = "foo bar oni"]
then
 echo "yes"
fi

More quoting specifics

If you want your environment variables to be expanded, you must enclose them in double
quotes, rather than single quotes. Single quotes disable variable (as well as history)
expansion.

The above code will work as expected and will not create any unpleasant surprises.

Looping constructs: "for"

OK, we've covered conditionals, now it's time to explore bash looping constructs. We'll start with
the standard "for" loop. Here's a basic example:

#!/usr/bin/env bash

for x in one two three four
do
 echo number $x
done

output:
number one
number two
number three
number four

What exactly happened? The "for x" part of our "for" loop defined a new environment variable
(also called a loop control variable) called "$x", which was successively set to the values "one",
"two", "three", and "four". After each assignment, the body of the loop (the code between the
"do" ... "done") was executed once. In the body, we referred to the loop control variable "$x" using
standard variable expansion syntax, like any other environment variable. Also notice that "for"
loops always accept some kind of word list after the "in" statement. In this case we specified four
English words, but the word list can also refer to file(s) on disk or even file wildcards. Look at the
following example, which demonstrates how to use standard shell wildcards:

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 2 Page 5 of 12

#!/usr/bin/env bash

for myfile in /etc/r*
do
 if [-d "$myfile"]
 then
 echo "$myfile (dir)"
 else
 echo "$myfile"
 fi
done

output:

/etc/rc.d (dir)
/etc/resolv.conf
/etc/resolv.conf~
/etc/rpc

The above code looped over each file in /etc that began with an "r". To do this, bash first took
our wildcard /etc/r* and expanded it, replacing it with the string /etc/rc.d /etc/resolv.conf /etc/
resolv.conf~ /etc/rpc before executing the loop. Once inside the loop, the "-d" conditional operator
was used to perform two different actions, depending on whether myfile was a directory or not. If it
was, a " (dir)" was appended to the output line.

We can also use multiple wildcards and even environment variables in the word list:

for x in /etc/r??? /var/lo* /home/drobbins/mystuff/* /tmp/${MYPATH}/*
do
 cp $x /mnt/mydir
done

Bash will perform wildcard and variable expansion in all the right places, and potentially create a
very long word list.

While all of our wildcard expansion examples have used absolute paths, you can also use relative
paths, as follows:

for x in ../* mystuff/*
do
 echo $x is a silly file
done

In the above example, bash performs wildcard expansion relative to the current working directory,
just like when you use relative paths on the command line. Play around with wildcard expansion
a bit. You'll notice that if you use absolute paths in your wildcard, bash will expand the wildcard
to a list of absolute paths. Otherwise, bash will use relative paths in the subsequent word list. If
you simply refer to files in the current working directory (for example, if you type "for x in *"), the
resultant list of files will not be prefixed with any path information. Remember that preceding path
information can be stripped using the "basename" executable, as follows:

for x in /var/log/*
do
 echo `basename $x` is a file living in /var/log
done

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 6 of 12

Of course, it's often handy to perform loops that operate on a script's command-line arguments.
Here's an example of how to use the "$@" variable, introduced at the beginning of this article:

#!/usr/bin/env bash

for thing in "$@"
do
 echo you typed ${thing}.
done

output:

$ allargs hello there you silly
you typed hello.
you typed there.
you typed you.
you typed silly.

Shell arithmetic

Before looking at a second type of looping construct, it's a good idea to become familiar with
performing shell arithmetic. Yes, it's true: You can perform simple integer math using shell
constructs. Simply enclose the particular arithmetic expression between a "$((" and a "))", and
bash will evaluate the expression. Here are some examples:

$ echo $((100 / 3))
33
$ myvar="56"
$ echo $(($myvar + 12))
68
$ echo $(($myvar - $myvar))
0
$ myvar=$(($myvar + 1))
$ echo $myvar
57

Now that you're familiar performing mathematical operations, it's time to introduce two other bash
looping constructs, "while" and "until".

More looping constructs: "while" and "until"

A "while" statement will execute as long as a particular condition is true, and has the following
format:

while [condition]
do
 statements
done

"While" statements are typically used to loop a certain number of times, as in the following
example, which will loop exactly 10 times:

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 2 Page 7 of 12

myvar=0
while [$myvar -ne 10]
do
 echo $myvar
 myvar=$(($myvar + 1))
done

You can see the use of arithmetic expansion to eventually cause the condition to be false, and the
loop to terminate.

"Until" statements provide the inverse functionality of "while" statements: They repeat as long as a
particular condition is false. Here's an "until" loop that functions identically to the previous "while"
loop:

myvar=0
until [$myvar -eq 10]
do
 echo $myvar
 myvar=$(($myvar + 1))
done

Case statements
Case statements are another conditional construct that comes in handy. Here's an example
snippet:

case "${x##*.}" in
 gz)
 gzunpack ${SROOT}/${x}
 ;;
 bz2)
 bz2unpack ${SROOT}/${x}
 ;;
 *)
 echo "Archive format not recognized."
 exit
 ;;
esac

Above, bash first expands "${x##*.}". In the code, "$x" is the name of a file, and "${x##.*}" has
the effect of stripping all text except that following the last period in the filename. Then, bash
compares the resultant string against the values listed to the left of the ")"s. In this case, "${x##.*}"
gets compared against "gz", then "bz2" and finally "*". If "${x##.*}" matches any of these strings or
patterns, the lines immediately following the ")" are executed, up until the ";;", at which point bash
continues executing lines after the terminating "esac". If no patterns or strings are matched, no
lines of code are executed; however, in this particular code snippet, at least one block of code will
execute, because the "*" pattern will catch everything that didn't match "gz" or "bz2".

Functions and namespaces
In bash, you can even define functions, similar to those in other procedural languages like Pascal
and C. In bash, functions can even accept arguments, using a system very similar to the way
scripts accept command-line arguments. Let's take a look at a sample function definition and then
proceed from there:

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 8 of 12

tarview() {
 echo -n "Displaying contents of $1 "
 if [${1##*.} = tar]
 then
 echo "(uncompressed tar)"
 tar tvf $1
 elif [${1##*.} = gz]
 then
 echo "(gzip-compressed tar)"
 tar tzvf $1
 elif [${1##*.} = bz2]
 then
 echo "(bzip2-compressed tar)"
 cat $1 | bzip2 -d | tar tvf -
 fi
}

Another case
The above code could have been written using a "case" statement. Can you figure out how?

Above, we define a function called "tarview" that accepts one argument, a tarball of some
kind. When the function is executed, it identifies what type of tarball the argument is (either
uncompressed, gzip-compressed, or bzip2-compressed), prints out a one-line informative
message, and then displays the contents of the tarball. This is how the above function should be
called (whether from a script or from the command line, after it has been typed in, pasted in, or
sourced):

$ tarview shorten.tar.gz
Displaying contents of shorten.tar.gz (gzip-compressed tar)
drwxr-xr-x ajr/abbot 0 1999-02-27 16:17 shorten-2.3a/
-rw-r--r-- ajr/abbot 1143 1997-09-04 04:06 shorten-2.3a/Makefile
-rw-r--r-- ajr/abbot 1199 1996-02-04 12:24 shorten-2.3a/INSTALL
-rw-r--r-- ajr/abbot 839 1996-05-29 00:19 shorten-2.3a/LICENSE
....

Use 'em interactively
Don't forget that functions, like the one above, can be placed in your ~/.bashrc or
~/.bash_profile so that they are available for use whenever you are in bash.

As you can see, arguments can be referenced inside the function definition by using the same
mechanism used to reference command-line arguments. In addition, the "$#" macro will be
expanded to contain the number of arguments. The only thing that may not work completely as
expected is the variable "$0", which will either expand to the string "bash" (if you run the function
from the shell, interactively) or to the name of the script the function is called from.

Namespace
Often, you'll need to create environment variables inside a function. While possible, there's a
technicality you should know about. In most compiled languages (such as C), when you create a
variable inside a function, it's placed in a separate local namespace. So, if you define a function in
C called myfunction, and in it define a variable called "x", any global (outside the function) variable
called "x" will not be affected by it, eliminating side effects.

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 2 Page 9 of 12

While true in C, this isn't true in bash. In bash, whenever you create an environment variable inside
a function, it's added to the global namespace. This means that it will overwrite any global variable
outside the function, and will continue to exist even after the function exits:

#!/usr/bin/env bash

myvar="hello"

myfunc() {

 myvar="one two three"
 for x in $myvar
 do
 echo $x
 done
}

myfunc

echo $myvar $x

When this script is run, it produces the output "one two three three", showing how "$myvar"
defined in the function clobbered the global variable "$myvar", and how the loop control variable
"$x" continued to exist even after the function exited (and also would have clobbered any global
"$x", if one were defined).

In this simple example, the bug is easy to spot and to compensate for by using alternate variable
names. However, this isn't the right approach; the best way to solve this problem is to prevent the
possibility of clobbering global variables in the first place, by using the "local" command. When we
use "local" to create variables inside a function, they will be kept in the local namespace and not
clobber any global variables. Here's how to implement the above code so that no global variables
are overwritten:

#!/usr/bin/env bash

myvar="hello"

myfunc() {
 local x
 local myvar="one two three"
 for x in $myvar
 do
 echo $x
 done
}

myfunc

echo $myvar $x

This function will produce the output "hello" -- the global "$myvar" doesn't get overwritten, and
"$x" doesn't continue to exist outside of myfunc. In the first line of the function, we create x, a local
variable that is used later, while in the second example (local myvar="one two three"") we create
a local myvar and assign it a value. The first form is handy for keeping loop control variables local,
since we're not allowed to say "for local x in $myvar". This function doesn't clobber any global

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 10 of 12

variables, and you are encouraged to design all your functions this way. The only time you should
not use "local" is when you explicitly want to modify a global variable.

Wrapping it up

Now that we've covered the most essential bash functionality, it's time to look at how to develop an
entire application based in bash. In my next installment, we'll do just that. See you then!

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 2 Page 11 of 12

Resources

• Read "Bash by example: Part 1" on developerWorks.
• Read "Bash by example: Part 3" on developerWorks.
• Visit GNU's bash home page.

http://www.ibm.com/developerworks/library/l-bash.html
http://www.ibm.com/developerworks/library/l-bash3.html
http://www.gnu.org/software/bash/bash.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 2 Page 12 of 12

About the author

Daniel Robbins

Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of
the Gentoo Project, CEO of Gentoo Technologies, Inc., the mentor for the Linux
Advanced Multimedia Project (LAMP), and a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, SuSE Linux Unleashed, and Samba
Unleashed. Daniel has been involved with computers in some fashion since the
second grade, when he was first exposed to the Logo programming language as well
as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel
enjoys spending time with his wife, Mary, who is expecting a child this spring. You can
contact Daniel at drobbins@gentoo.org.

© Copyright IBM Corporation 2000, 2013
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.gentoo.org/
mailto:drobbins@gentoo.org
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Accepting arguments
	Bash programming constructs
	Conditional love
	String comparison caveats
	Looping constructs: "for"
	Shell arithmetic
	More looping constructs: "while" and "until"
	Case statements
	Functions and namespaces
	Namespace
	Wrapping it up
	Resources
	About the author
	Trademarks

