
© Copyright IBM Corporation 2000 Trademarks
Bash by example, Part 3 Page 1 of 14

Bash by example, Part 3
Exploring the ebuild system

Daniel Robbins
President and CEO
Gentoo Technologies, Inc.

01 May 2000

In his final Bash by example article, Daniel Robbins takes a good look at the Gentoo Linux
ebuild system, an excellent example of the power of bash. Step by step, he shows you how
the ebuild system was implemented, and touches on many handy bash techniques and design
strategies. By the end of the article, you'll have a good grasp of what's involved in producing a
full-blown bash-based application, as well as a start at coding your own auto-build system.

Enter the ebuild system
I've really been looking forward to this third and final Bash by example article, because now that
we've already covered bash programming fundamentals in Part 1 and Part 2, we can focus on
more advanced topics, like bash application development and program design. For this article, I
will give you a good dose of practical, real-world bash development experience by presenting a
project that I've spent many hours coding and refining: The Gentoo Linux ebuild system.

I'm the chief architect of Gentoo Linux, a next-generation Linux OS currently in beta. One of my
primary responsibilities is to make sure that all of the binary packages (similar to RPM packages)
are created properly and work together. As you probably know, a standard Linux system is not
composed of a single unified source tree (like BSD), but is actually made up of about 25+ core
packages that work together. Some of the packages include:

Package Description

linux The actual kernel

util-linux A collection of miscellaneous Linux-related programs

e2fsprogs A collection of ext2 filesystem-related utilities

glibc The GNU C library

Each package is in its own tarball and is maintained by separate independent developers, or
teams of developers. To create a distribution, each package has to be separately downloaded,
compiled, and packaged. Every time a package must be fixed, upgraded, or improved, the

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/library/l-bash.html
http://www.ibm.com/developerworks/library/l-bash2.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 2 of 14

compilation and packaging steps must be repeated (and this gets old really fast). To help eliminate
the repetitive steps involved in creating and updating packages, I created the ebuild system,
written almost entirely in bash. To enhance your bash knowledge, I'll show you how I implemented
the unpack and compile portions of the ebuild system, step by step. As I explain each step, I'll also
discuss why certain design decisions were made. By the end of this article, not only will you have
an excellent grasp of larger-scale bash programming projects, but you'll also have implemented a
good portion of a complete auto-build system.

Why bash?
Bash is an essential component of the Gentoo Linux ebuild system. It was chosen as ebuild's
primary language for a number of reasons. First, it has an uncomplicated and familiar syntax
that is especially well suited for calling external programs. An auto-build system is "glue code"
that automates the calling of external programs, and bash is very well suited to this type of
application. Second, Bash's support for functions allowed the ebuild system to have modular, easy-
to-understand code. Third, the ebuild system takes advantage of bash's support for environment
variables, allowing package maintainers and developers to configure it easily, on-the-fly.

Build process review
Before we look at the ebuild system, let's review what's involved in getting a package compiled
and installed. For our example, we will look at the "sed" package, a standard GNU text
stream editing utility that is part of all Linux distributions. First, download the source tarball
(sed-3.02.tar.gz) (see Resources). We will store this archive in /usr/src/distfiles, a directory we will
refer to using the environment variable "$DISTDIR". "$DISTDIR" is the directory where all of our
original source tarballs live; it's a big vault of source code.

Our next step is to create a temporary directory called "work", which houses the uncompressed
sources. We'll refer to this directory later using the "$WORKDIR" environment variable. To do this,
change to a directory where we have write permission and type the following:

Uncompressing sed into a temporary directory
$ mkdir work
$ cd work
$ tar xzf /usr/src/distfiles/sed-3.02.tar.gz

The tarball is then decompressed, creating a directory called sed-3.02 that contains all of the
sources. We'll refer to the sed-3.02 directory later using the environment variable "$SRCDIR". To
compile the program, type the following:

Uncompressing sed into a temporary directory
$ cd sed-3.02
$./configure --prefix=/usr
(autoconf generates appropriate makefiles, this can take a while)

$ make

(the package is compiled from sources, also takes a bit of time)

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 3 of 14

We're going to skip the "make install" step, since we are just covering the unpack and compile
steps in this article. If we wanted to write a bash script to perform all these steps for us, it could
look something like this:

Sample bash script to perform the unpack/compile process
#!/usr/bin/env bash

if [-d work]
then
remove old work directory if it exists
 rm -rf work
fi
mkdir work
cd work
tar xzf /usr/src/distfiles/sed-3.02.tar.gz
cd sed-3.02
./configure --prefix=/usr
make

Generalizing the code
Although this autocompile script works, it's not very flexible. Basically, the bash script just contains
the listing of all the commands that were typed at the command line. While this solution works, it
would be nice to make a generic script that can be configured quickly to unpack and compile any
package just by changing a few lines. That way, it's much less work for the package maintainer to
add new packages to the distribution. Let's take a first stab at doing this by using lots of different
environment variables, making our build script more generic:

A new, more general script
#!/usr/bin/env bash

P is the package name

P=sed-3.02

A is the archive name

A=${P}.tar.gz

export ORIGDIR=`pwd`
export WORKDIR=${ORIGDIR}/work
export SRCDIR=${WORKDIR}/${P}

if [-z "$DISTDIR"]
then
 # set DISTDIR to /usr/src/distfiles if not already set
 DISTDIR=/usr/src/distfiles
fi
export DISTDIR

if [-d ${WORKDIR}]
then
 # remove old work directory if it exists
 rm -rf ${WORKDIR}
fi

mkdir ${WORKDIR}
cd ${WORKDIR}
tar xzf ${DISTDIR}/${A}
cd ${SRCDIR}

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 4 of 14

./configure --prefix=/usr
make

We've added a lot of environment variables to the code, but it still does basically the same thing.
However, now, to compile any standard GNU autoconf-based source tarball, we can simply
copy this file to a new file (with an appropriate name to reflect the name of the new package it
compiles), and then change the values of "$A" and "$P" to new values. All other environment
variables automatically adjust to the correct settings, and the script works as expected. While
this is handy, there's a further improvement that can be made to the code. This particular code
is much longer than the original "transcript" script that we created. Since one of the goals for
any programming project should be the reduction of complexity for the user, it would be nice to
dramatically shrink the code, or at least organize it better. We can do this by performing a neat trick
-- we'll split the code into two separate files. Save this file as "sed-3.02.ebuild":

sed-3.02.ebuild
#the sed ebuild file -- very simple!
P=sed-3.02
A=${P}.tar.gz

Our first file is trivial, and contains only those environment variables that must be configured on a
per-package basis. Here's the second file, which contains the brains of the operation. Save this
one as "ebuild" and make it executable:

The ebuild script
#!/usr/bin/env bash

if [$# -ne 1]
then
 echo "one argument expected."
 exit 1
fi

if [-e "$1"]
then
 source $1
else
 echo "ebuild file $1 not found."
 exit 1
fi

export ORIGDIR=`pwd`
export WORKDIR=${ORIGDIR}/work
export SRCDIR=${WORKDIR}/${P}

if [-z "$DISTDIR"]
then
 # set DISTDIR to /usr/src/distfiles if not already set
 DISTDIR=/usr/src/distfiles
fi
export DISTDIR

if [-d ${WORKDIR}]
then
 # remove old work directory if it exists
 rm -rf ${WORKDIR}
fi

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 5 of 14

mkdir ${WORKDIR}
cd ${WORKDIR}
tar xzf ${DISTDIR}/${A}
cd ${SRCDIR}
./configure --prefix=/usr
make

Now that we've split our build system into two files, I bet you're wondering how it works. Basically,
to compile sed, type:

$./ebuild sed-3.02.ebuild

When "ebuild" executes, it first tries to "source" variable "$1". What does this mean? From
my previous article, recall that "$1" is the first command line argument -- in this case,
"sed-3.02.ebuild". In bash, the "source" command reads in bash statements from a file, and
executes them as if they appeared immediately in the file the "source" command is in. So, "source
${1}" causes the "ebuild" script to execute the commands in "sed-3.02.ebuild", which cause "$P"
and "$A" to be defined. This design change is really handy, because if we want to compile another
program instead of sed, we can simply create a new .ebuild file and pass it as an argument to our
"ebuild" script. That way, the .ebuild files end up being really simple, while the complicated brains
of the ebuild system get stored in one place -- our "ebuild" script. This way, we can upgrade or
enhance the ebuild system simply by editing the "ebuild" script, keeping the implementation details
outside of the ebuild files. Here's a sample ebuild file for gzip:

gzip-1.2.4a.ebuild
#another really simple ebuild script!
P=gzip-1.2.4a
A=${P}.tar.gz

Adding functionality
OK, we're making some progress. But, there is some additional functionality I'd like to add. I'd like
the ebuild script to accept a second command-line argument, which will be "compile", "unpack",
or "all". This second command-line argument tells the ebuild script which particular step of the
build process to perform. That way, I can tell ebuild to unpack the archive, but not compile it (just
in case I need to inspect the source archive before compilation begins). To do this, I'll add a case
statement that will test variable "$2", and do different things based on its value. Here's what the
code looks like now:

ebuild, revision 2
#!/usr/bin/env bash

if [$# -ne 2]
then
 echo "Please specify two args - .ebuild file and unpack, compile or all"
 exit 1
fi

if [-z "$DISTDIR"]
then
 # set DISTDIR to /usr/src/distfiles if not already set

http://www.ibm.com/developerworks/linux/library/l-bash2.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 6 of 14

 DISTDIR=/usr/src/distfiles
fi
export DISTDIR

ebuild_unpack() {
 #make sure we're in the right directory
 cd ${ORIGDIR}

 if [-d ${WORKDIR}]
 then
 rm -rf ${WORKDIR}
 fi

 mkdir ${WORKDIR}
 cd ${WORKDIR}
 if [! -e ${DISTDIR}/${A}]
 then
 echo "${DISTDIR}/${A} does not exist. Please download first."
 exit 1
 fi
 tar xzf ${DISTDIR}/${A}
 echo "Unpacked ${DISTDIR}/${A}."
 #source is now correctly unpacked
}

ebuild_compile() {

 #make sure we're in the right directory
 cd ${SRCDIR}
 if [! -d "${SRCDIR}"]
 then
 echo "${SRCDIR} does not exist -- please unpack first."
 exit 1
 fi
 ./configure --prefix=/usr
 make
}

export ORIGDIR=`pwd`
export WORKDIR=${ORIGDIR}/work

if [-e "$1"]
then
 source $1
else
 echo "Ebuild file $1 not found."
 exit 1
fi

export SRCDIR=${WORKDIR}/${P}

case "${2}" in
 unpack)
 ebuild_unpack
 ;;
 compile)
 ebuild_compile
 ;;
 all)
 ebuild_unpack
 ebuild_compile
 ;;
 *)
 echo "Please specify unpack, compile or all as the second arg"
 exit 1
 ;;

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 7 of 14

esac

We've made a lot of changes, so let's review them. First, we placed the compile and unpack steps
in their own functions, and called ebuild_compile() and ebuild_unpack(), respectively. This is a
good move, since the code is getting more complicated, and the new functions provide some
modularity, which helps to keep things organized. On the first line in each function, I explicitly
"cd" into the directory I want to be in because, as our code is becoming more modular rather than
linear, it's more likely that we might slip up and execute a function in the wrong current working
directory. The "cd" commands explicitly put us in the right place, and prevent us from making a
mistake later -- an important step -- especially if you will be deleting files inside the functions.

Also, I added a useful check to the beginning of the ebuild_compile() function. Now, it checks to
make sure the "$SRCDIR" exists, and, if not, it prints an error message telling the user to unpack
the archive first, and then exits. If you like, you can change this behavior so that if "$SRCDIR"
doesn't exist, our ebuild script will unpack the source archive automatically. You can do this by
replacing ebuild_compile() with the following code:

A new spin on ebuild_compile()

ebuild_compile() {
 #make sure we're in the right directory
 if [! -d "${SRCDIR}"]
 then
 ebuild_unpack
 fi
 cd ${SRCDIR}
 ./configure --prefix=/usr
 make
}

One of the most obvious changes in our second version of the ebuild script is the new case
statement at the end of the code. This case statement simply checks the second command-line
argument, and performs the correct action, depending on its value. If we now type:

$ ebuild sed-3.02.ebuild

we'll actually get an error message. ebuild now wants to be told what to do, as follows:

$ ebuild sed-3.02.ebuild unpack

or

$ ebuild sed-3.02.ebuild compile

or

$ ebuild sed-3.02.ebuild all

If you provide a second command-line argument, other than those listed above, you get an error
message (the * clause), and the program exits.

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 8 of 14

Modularizing the code
Now that the code is quite advanced and functional, you may be tempted to create several more
ebuild scripts to unpack and compile your favorite programs. If you do, sooner or later you'll come
across some sources that do not use autoconf ("./configure") or possibly others that have non-
standard compilation processes. We need to make some more changes to the ebuild system
to accommodate these programs. But before we do, it is a good idea to think a bit about how to
accomplish this.

One of the great things about hard-coding "./configure --prefix=/usr; make" into our compile stage
is that, most of the time, it works. But, we must also have the ebuild system accommodate sources
that do not use autoconf or normal Makefiles. To solve this problem, I propose that our ebuild script
should, by default, do the following:

1. If there is a configure script in "${SRCDIR}", execute it as follows:
./configure --prefix=/usr

Otherwise, skip this step.
2. Execute the following command: make

Since ebuild only runs configure if it actually exists, we can now automatically accommodate
those programs that don't use autoconf and have standard makefiles. But what if a simple "make"
doesn't do the trick for some sources? We need a way to override our reasonable defaults with
some specific code to handle these situations. To do this, we'll transform our ebuild_compile()
function into two functions. The first function, which can be looked at as a "parent" function, will
still be called ebuild_compile(). However, we'll have a new function, called user_compile(), which
contains only our reasonable default actions:

ebuild_compile() split into two functions
user_compile() {
 #we're already in ${SRCDIR}
 if [-e configure]
 then
 #run configure script if it exists
 ./configure --prefix=/usr
 fi
 #run make
 make
}

ebuild_compile() {
 if [! -d "${SRCDIR}"]
 then
 echo "${SRCDIR} does not exist -- please unpack first."
 exit 1
 fi
 #make sure we're in the right directory
 cd ${SRCDIR}
 user_compile
}

It may not seem obvious why I'm doing this right now, but bear with me. While the code works
almost identically to our previous version of ebuild, we can now do something that we couldn't

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 9 of 14

do before -- we can override user_compile() in sed-3.02.ebuild. So, if the default user_compile()
function doesn't meet our needs, we can define a new one in our .ebuild file that contains the
commands required to compile the package. For example, here's an ebuild file for e2fsprogs-1.18,
which requires a slightly different "./configure" line:

e2fsprogs-1.18.ebuild
#this ebuild file overrides the default user_compile()
P=e2fsprogs-1.18
A=${P}.tar.gz

user_compile() {
 ./configure --enable-elf-shlibs
 make
}

Now, e2fsprogs will be compiled exactly the way we want it to be. But, for most packages, we can
omit any custom user_compile() function in the .ebuild file, and the default user_compile() function
is used instead.

How exactly does the ebuild script know which user_compile() function to use? This is actually
quite simple. In the ebuild script, the default user_compile() function is defined before the
e2fsprogs-1.18.ebuild file is sourced. If there is a user_compile() in e2fsprogs-1.18.ebuild, it
overwrites the default version defined previously. If not, the default user_compile() function is used.

This is great stuff; we've added a lot of flexibility without requiring any complex code if it's not
needed. We won't cover it here, but you could also make similar modifications to ebuild_unpack()
so that users can override the default unpacking process. This could come in handy if any patching
has to be done, or if the files are contained in multiple archives. It is also a good idea to modify our
unpacking code so that it recognizes bzip2-compressed tarballs by default.

Configuration files
We've covered a lot of sneaky bash techniques so far, and now it's time to cover one more. Often,
it's handy for a program to have a global configuration file that resides in /etc. Fortunately, this is
easy to do using bash. Simply create the following file and save it as /etc/ebuild.conf:

/ect/ebuild.conf
/etc/ebuild.conf: set system-wide ebuild options in this file

MAKEOPTS are options passed to make
MAKEOPTS="-j2"

What is a parallel make?

To speed compilation on multiprocessor systems, make supports compiling a program in
parallel. This means that instead of compiling just one source file at a time, make compiles
a user-specified number of source files simultaneously (so those extra processors in a
multiprocessor system are used). Parallel makes are enabled by passing the -j # option to
make, as follows:

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 10 of 14

make -j4 MAKE="make -j4"

This code instructs make to compile four programs simultaneously. The MAKE="make -j4"
argument tells make to pass the -j4 option to any child make processes it launches.

In this example, I've included just one configuration option, but you could include many more.
One of the beautiful things about bash is that this file can be parsed by simply sourcing it. This
is a design trick that works with most interpreted languages. After /etc/ebuild.conf is sourced,
"$MAKEOPTS" is defined inside our ebuild script. We'll use it to allow the user to pass options to
make. Normally, this option would be used to allow the user to tell ebuild to do a parallel make.

Here's the final version of our ebuild program:

ebuild, the final version
#!/usr/bin/env bash

if [$# -ne 2]
then
 echo "Please specify ebuild file and unpack, compile or all"
 exit 1
fi

source /etc/ebuild.conf

if [-z "$DISTDIR"]
then
 # set DISTDIR to /usr/src/distfiles if not already set
 DISTDIR=/usr/src/distfiles
fi
export DISTDIR

ebuild_unpack() {
 #make sure we're in the right directory
 cd ${ORIGDIR}

 if [-d ${WORKDIR}]
 then
 rm -rf ${WORKDIR}
 fi

 mkdir ${WORKDIR}
 cd ${WORKDIR}
 if [! -e ${DISTDIR}/${A}]
 then
 echo "${DISTDIR}/${A} does not exist. Please download first."
 exit 1
 fi
 tar xzf ${DISTDIR}/${A}
 echo "Unpacked ${DISTDIR}/${A}."
 #source is now correctly unpacked
}

user_compile() {
 #we're already in ${SRCDIR}
 if [-e configure]
 then
 #run configure script if it exists
 ./configure --prefix=/usr
 fi
 #run make
 make $MAKEOPTS MAKE="make $MAKEOPTS"
}

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 11 of 14

ebuild_compile() {
 if [! -d "${SRCDIR}"]
 then
 echo "${SRCDIR} does not exist -- please unpack first."
 exit 1
 fi
 #make sure we're in the right directory
 cd ${SRCDIR}
 user_compile
}

export ORIGDIR=`pwd`
export WORKDIR=${ORIGDIR}/work

if [-e "$1"]
then
 source $1
else
 echo "Ebuild file $1 not found."
 exit 1
fi

export SRCDIR=${WORKDIR}/${P}

case "${2}" in
 unpack)
 ebuild_unpack
 ;;
 compile)
 ebuild_compile
 ;;
 all)
 ebuild_unpack
 ebuild_compile
 ;;
 *)
 echo "Please specify unpack, compile or all as the second arg"
 exit 1
 ;;
esac

Notice /etc/ebuild.conf is sourced near the beginning of the file. Also, notice that we use
"$MAKEOPTS" in our default user_compile() function. You may be wondering how this will work
-- after all, we refer to "$MAKEOPTS" before we source /etc/ebuild.conf, which actually defines
"$MAKEOPTS" in the first place. Fortunately for us, this is OK because variable expansion
only happens when user_compile() is executed. By the time user_compile() is executed, /etc/
ebuild.conf has already been sourced, and "$MAKEOPTS" is set to the correct value.

Wrapping it up
We've covered a lot of bash programming techniques in this article, but we've only touched the
surface of the power of bash. For example, the production Gentoo Linux ebuild system not only
automatically unpacks and compiles each package, but it can also:

• Automatically download the sources if they are not found in "$DISTDIR"
• Verify that the sources are not corrupted by using MD5 message digests
• If requested, install the compiled application into the live filesystem, recording all installed files

so that the package can be easily uninstalled at a later date

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 12 of 14

• If requested, package the compiled application in a tarball (compressed the way you like it) so
that it can be installed later, on another computer, or during the CD-based installation process
(if you are building a distribution CD)

In addition, the production ebuild system has several other global configuration options, allowing
the user to specify options such as what optimization flags to use during compilation, and whether
optional support for packages like GNOME and slang should be enabled by default in those
packages that support it.

It's clear that bash can accomplish much more than what I've touched on in this series of articles. I
hope you've learned a lot about this incredible tool, and are excited about using bash to speed up
and enhance your development projects.

ibm.com/developerWorks/ developerWorks®

Bash by example, Part 3 Page 13 of 14

Resources

• Download the source tarball (sed-3.02.tar.gz) from ftp://ftp.gnu.org/pub/gnu/sed.
• Read "Bash by example: Part 1" on developerWorks.
• Read "Bash by example: Part 2" on developerWorks.
• Visit the home page of the Gentoo Project.
• Visit GNU's bash home page.

ftp://ftp.gnu.org/pub/gnu/sed
http://www.ibm.com/developerworks/library/l-bash.html
http://www.ibm.com/developerworks/library/l-bash2.html
http://www.gentoo.org/
http://www.gnu.org/software/bash/bash.html

developerWorks® ibm.com/developerWorks/

Bash by example, Part 3 Page 14 of 14

About the author

Daniel Robbins

Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of
the Gentoo Project, CEO of Gentoo Technologies, Inc., the mentor for the Linux
Advanced Multimedia Project (LAMP), and a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, SuSE Linux Unleashed, and Samba
Unleashed. Daniel has been involved with computers in some fashion since the
second grade, when he was first exposed to the Logo programming language as well
as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel
enjoys spending time with his wife, Mary, who is expecting a child this spring. You can
contact Daniel at drobbins@gentoo.org.

© Copyright IBM Corporation 2000
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.gentoo.org/
mailto:drobbins@gentoo.org
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Enter the ebuild system
	Why bash?
	Build process review
	Generalizing the code
	Adding functionality
	Modularizing the code
	Configuration files
	Wrapping it up
	Resources
	About the author
	Trademarks

