
© Copyright IBM Corporation 2000 Trademarks
Common threads: Sed by example, Part 3 Page 1 of 10

Common threads: Sed by example, Part 3
Taking it to the next level: Data crunching, sed style

Daniel Robbins November 01, 2000

In this conclusion of the sed series, Daniel Robbins gives you a true taste of the power of sed.
After introducing a handful of essential sed scripts, he'll demonstrate some radical sed scripting
by converting a Quicken .QIF file into a text-readable format. This conversion script is not only
functional, it also serves as an excellent example of sed scripting power.

Muscular sed
In my second sed article, I offered examples that demonstrated how sed works, but very few
of these examples actually did anything particularly useful. In this final sed article, it's time to
change that pattern and put sed to good use. I'll show you several excellent examples that not
only demonstrate the power of sed, but also do some really neat (and handy) things. For example,
in the second half of the article, I'll show you how I designed a sed script that converts a .QIF file
from Intuit's Quicken financial program into a nicely formatted text file. Before doing that, we'll take
a look at some less complicated yet useful sed scripts.

Text translation
Our first practical script converts UNIX-style text to DOS/Windows format. As you probably know,
DOS/Windows-based text files have a CR (carriage return) and LF (line feed) at the end of each
line, while UNIX text has only a line feed. There may be times when you need to move some UNIX
text to a Windows system, and this script will perform the necessary format conversion for you.

$ sed -e 's/$/\r/' myunix.txt > mydos.txt

In this script, the '$' regular expression will match the end of the line, and the '\r' tells sed to insert a
carriage return right before it. Insert a carriage return before a line feed, and presto, a CR/LF ends
each line. Please note that the '\r' will be replaced with a CR only when using GNU sed 3.02.80 or
later. If you haven't installed GNU sed 3.02.80 yet, see my first sed article for instructions on how
to do this.

I can't tell you how many times I've downloaded some example script or C code, only to find that
it's in DOS/Windows format. While many programs don't mind DOS/Windows format CR/LF text

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
https://developer.ibm.com/author/drobbins/
http://www.ibm.com/developerworks/linux/library/l-sed2/index.html
http://www.ibm.com/developerworks/linux/library/l-sed1.html

developerWorks® ibm.com/developerWorks/

Common threads: Sed by example, Part 3 Page 2 of 10

files, several programs definitely do -- the most notable being bash, which chokes as soon as it
encounters a carriage return. The following sed invocation will convert DOS/Windows format text
to trusty UNIX format:

$ sed -e 's/.$//' mydos.txt > myunix.txt

The way this script works is simple: our substitution regular expression matches the last character
on the line, which happens to be a carriage return. We replace it with nothing, causing it to be
deleted from the output entirely. If you use this script and notice that the last character of every line
of the output has been deleted, you've specified a text file that's already in UNIX format. No need
for that!

Reversing lines
Here's another handy little script. This one will reverse lines in a file, similar to the "tac" command
that's included with most Linux distributions. The name "tac" may be a bit misleading, because
"tac" doesn't reverse the position of characters on the line (left and right), but rather the position of
lines in the file (up and down). Tacing the following file:

foo

bar

oni

....produces the following output:

oni

bar

foo

We can do the same thing with the following sed script:

$ sed -e '1!G;h;$!d' forward.txt > backward.txt

You'll find this sed script useful if you're logged in to a FreeBSD system, which doesn't happen
to have a "tac" command. While handy, it's also a good idea to know why this script does what it
does. Let's dissect it.

Reversal explained
First, this script contains three separate sed commands, separated by semicolons: '1!G', 'h' and
'$!d'. Now, it's time to get an good understanding of the addresses used for the first and third
commands. If the first command were '1G', the 'G' command would be applied only to the first
line. However, there is an additional '!' character -- this '!' character negates the address, meaning
that the 'G' command will apply to all but the first line. For the '$!d' command, we have a similar
situation. If the command were '$d', it would apply the 'd' command to only the last line in the file
(the '$' address is a simple way of specifying the last line). However, with the '!', '$!d' will apply

ibm.com/developerWorks/ developerWorks®

Common threads: Sed by example, Part 3 Page 3 of 10

the 'd' command to all but the last line. Now, all we need to to is understand what the commands
themselves do.

When we execute our line reversal script on the text file above, the first command that gets
executed is 'h'. This command tells sed to copy the contents of the pattern space (the buffer
that holds the current line being worked on) to the hold space (a temporary buffer). Then, the 'd'
command is executed, which deletes "foo" from the pattern space, so it doesn't get printed after all
the commands are executed for this line.

Now, line two. After "bar" is read into the pattern space, the 'G' command is executed, which
appends the contents of the hold space ("foo\n") to the pattern space ("bar\n"), resulting in "bar\n
\foo\n" in our pattern space. The 'h' command puts this back in the hold space for safekeeping, and
'd' deletes the line from the pattern space so that it isn't printed.

For the last "oni" line, the same steps are repeated, except that the contents of the pattern space
aren't deleted (due to the '$!' before the 'd'), and the contents of the pattern space (three lines) are
printed to stdout.

Now, it's time to do some powerful data conversion with sed.

sed QIF magic
For the last few weeks, I've been thinking about purchasing a copy of Quicken to balance my bank
accounts. Quicken is a very nice financial program, and would certainly perform the job with flying
colors. But, after thinking about it, I decided that I could easily write some software that would
balance my checkbook. After all, I reasoned, I'm a software developer!

I developed a nice little checkbook balancing program (using awk) that calculates by balance
by parsing a text file containing all my transactions. After a bit of tweaking, I improved it so that
I could keep track of different credit and debit categories, just like Quicken can. But, there was
one more feature I wanted to add. I recently switched my accounts to a bank that has an online
Web account interface. One day, I noticed that my bank's Web site allowed me to to download my
account information in Quicken's .QIF format. In very little time, I decided that it would be really
neat if I could convert this information into text format.

A tale of two formats
Before we look at the QIF format, here's what my checkbook.txt format looks like:

28 Aug 2000 food - - Y Supermarket 30.94

25 Aug 2000 watr - 103 Y Check 103 52.86

In my file, all fields are separated by one or more tabs, with one transaction per line. After the date,
the next field lists the type of expense (or "-" if this is an income item). The third field lists the type
of income (or "-" if this is an expense item). Then, there's a check number field (again, "-" if empty),
a transaction cleared field ("Y" or "N"), a comment and a dollar amount. Now, we're ready to take a
look at the QIF format. When I viewed my downloaded QIF file in a text viewer, this is what I saw:

http://www.intuit.com

developerWorks® ibm.com/developerWorks/

Common threads: Sed by example, Part 3 Page 4 of 10

!Type:Bank

D08/28/2000

T-8.15

N

PCHECKCARD SUPERMARKET

^

D08/28/2000

T-8.25

N

PCHECKCARD PUNJAB RESTAURANT

^

D08/28/2000

T-17.17

N

PCHECKCARD SUPERMARKET

After scanning the file, wasn't very hard to figure out the format -- ignoring the first line, the format
is as follows:

D<date>

T<transaction amount>

N<check number>

P<description>

^

 (this is the field separator)

Starting the process

When you're tackling a significant sed project like this, don't get discouraged -- sed allows you to
gradually massage the data into its final form. As you progress, you can continue to refine your
sed script until your output appears exactly as intended. You don't need to get it exactly right on
the first try.

To start off, I created a file called "qiftrans.sed", and started massaging the data:

1d

/^^/d

s/[[:cntrl:]]//g

ibm.com/developerWorks/ developerWorks®

Common threads: Sed by example, Part 3 Page 5 of 10

The first '1d' command deletes the first line, and the second command removes those pesky '^'
characters from the output. The last line removes any control characters that may exist in the file.
Since I'm dealing with a foreign file format, I want to eliminate the risk of encountering any control
characters along the way. So far, so good. Now, it's time to add some processing punch to this
basic script:

1d

/^^/d

s/[[:cntrl:]]//g

/^D/ {

 s/^D\(.*\)/\1\tOUTY\tINNY\t/

 s/^01/Jan/

 s/^02/Feb/

 s/^03/Mar/

 s/^04/Apr/

 s/^05/May/

 s/^06/Jun/

 s/^07/Jul/

 s/^08/Aug/

 s/^09/Sep/

 s/^10/Oct/

 s/^11/Nov/

 s/^12/Dec/

 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:

}

First, I add a '/^D/' address so that sed will only begin processing when it encounters the first
character of the QIF date field, 'D'. All of the commands in the curly braces will execute in order as
soon as sed reads such a line into its pattern space.

The first line in the curly braces will transform a line that looks like:

D08/28/2000

into one that looks like thist:

08/28/2000 OUTY INNY

Of course, this format isn't perfect right now, but that's OK. We'll gradually refine the contents of
the pattern space as we go. The next 12 lines have the net effect of transforming the date to a

developerWorks® ibm.com/developerWorks/

Common threads: Sed by example, Part 3 Page 6 of 10

three-letter format, with the last line removing the three slashes from the date. We end up with this
line:

Aug 28 2000 OUTY INNY

The OUTY and INNY fields are serving as placeholders and will get replaced later. I can't specify
them just yet, because if the dollar amount is negative, I'll want to set OUTY and INNY to "misc"
and "-", but if the dollar amount is positive, I'll want to change them to "-" and "inco" respectively.
Since the dollar amount hasn't been read yet, I need to use placeholders for the time being.

Refinement
Now, it's time for some further refinement:

1d

/^^/d

s/[[:cntrl:]]//g

/^D/ {

 s/^D\(.*\)/\1\tOUTY\tINNY\t/

 s/^01/Jan/

 s/^02/Feb/

 s/^03/Mar/

 s/^04/Apr/

 s/^05/May/

 s/^06/Jun/

 s/^07/Jul/

 s/^08/Aug/

 s/^09/Sep/

 s/^10/Oct/

 s/^11/Nov/

 s/^12/Dec/

 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:

 N

 N

 N

 s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/

 s/NUMNUM/-/

 s/NUM\([0-9]*\)NUM/\1/

ibm.com/developerWorks/ developerWorks®

Common threads: Sed by example, Part 3 Page 7 of 10

 s/\([0-9]\),/\1/

}

The next seven lines are a bit complicated, so we'll cover them in detail. First, we have three 'N'
commands in a row. The 'N' command tells sed to read in the next line in the input and append it to
our current pattern space. The three 'N' commands cause the next three lines to be appended to
our current pattern space buffer, and now our line looks like this:

28 Aug 2000 OUTY INNY \nT-8.15\nN\nPCHECKCARD SUPERMARKET

Sed's pattern space got ugly -- we need to remove the extra newlines and perform some additional
formatting. To do this, we'll use the substitution command. The pattern we want to match is:

'\nT.*\nN.*\nP.*'

This will match a newline, followed by a 'T', followed by zero or more characters, followed by a
newline, followed by an 'N', followed by any number of characters and a newline, followed by a
'P', followed by any number of characters. Phew! This regexp will match the entire contents of
the three lines we just appended to the pattern space. But we want to reformat this region, not
replace it entirely. The dollar amount, check number (if any) and description need to reappear
in our replacement string. To do this, we surround those "interesting parts" with backslashed
parentheses, so that we can refer to them in our replacement string (using '\1', '\2\, and '\3' to tell
sed where to insert them). Here is the final command:

s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/

This command transforms our line into:

28 Aug 2000 OUTY INNY NUMNUM Y CHECKCARD SUPERMARKET AMT-8.15AMT

While this line is getting better, there are a few things that at first glance appear a
bit...er...interesting. The first is that silly "NUMNUM" string -- what purpose does that serve? You'll
find out as you inspect the next two lines of the sed script, which will replace "NUMNUM" with a
"-", while "NUM"<number>"NUM" will be replaced with <number>. As you can see, surrounding the
check number with a silly tag allows us to conveniently insert a "-" if the field is empty.

Finishing touches
The last line removes a comma following a number. This converts dollar amounts like "3,231.00" to
"3231.00", which is the format I use. Now, it's time to take a look at the final, production script:

1d

/^^/d

s/[[:cntrl:]]//g

/^D/ {

 s/^D\(.*\)/\1\tOUTY\tINNY\t/

developerWorks® ibm.com/developerWorks/

Common threads: Sed by example, Part 3 Page 8 of 10

 s/^01/Jan/

 s/^02/Feb/

 s/^03/Mar/

 s/^04/Apr/

 s/^05/May/

 s/^06/Jun/

 s/^07/Jul/

 s/^08/Aug/

 s/^09/Sep/

 s/^10/Oct/

 s/^11/Nov/

 s/^12/Dec/

 s:^\(.*\)/\(.*\)/\(.*\):\2 \1 \3:

 N

 N

 N

 s/\nT\(.*\)\nN\(.*\)\nP\(.*\)/NUM\2NUM\t\tY\t\t\3\tAMT\1AMT/

 s/NUMNUM/-/

 s/NUM\([0-9]*\)NUM/\1/

 s/\([0-9]\),/\1/

 /AMT-[0-9]*.[0-9]*AMT/b fixnegs

 s/AMT\(.*\)AMT/\1/

 s/OUTY/-/

 s/INNY/inco/

 b done

:fixnegs

 s/AMT-\(.*\)AMT/\1/

 s/OUTY/misc/

 s/INNY/-/

:done

}

The additional eleven lines use substitution and some branching functionality to perfect the output.
We'll want to take a look at this line first:

ibm.com/developerWorks/ developerWorks®

Common threads: Sed by example, Part 3 Page 9 of 10

 /AMT-[0-9]*.[0-9]*AMT/b fixnegs

This line contains a branch command, which is of the format "/regexp/b label". If the pattern space
matches the regexp, sed will branch to the fixnegs label. You should be able to easily spot this
label, which appears as ":fixnegs" in the code. If the regexp doesn't match, processing continues
as normal with the next command.

Now that you understand the workings of the command itself, let's take a look at the branches. If
you look at the branch regular expression, you'll see that it will match the string 'AMT', followed
by a '-', followed by any number of digits, a '.', any number of digits and 'AMT'. As I'm sure you've
figured out, this regexp deals specifically with a negative dollar amount. Earlier, we surrounded our
dollar amount with 'AMT' strings so we could easily find it later. Because the regexp only matches
dollar amounts that begin with a '-', our branch will only happen if we happen to be dealing with a
debit. If we are dealing with a debit, OUTY should be set to 'misc', INNY should be set to '-', and
the negative sign in front of the debit amount should be removed. If you follow the code, you'll see
that this is exactly what happens. If the branch isn't executed, OUTY gets replaced with '-', and
INNY gets replaced with 'inco'. We're finished! Our output line is now perfect:

28 Aug 2000 misc - - Y CHECKCARD SUPERMARKET -8.15

Don't get confuSed

As you can see, converting data using sed isn't all that hard, as long as you approach the problem
incrementally. Don't try to do everything with a single sed command, or all at once. Instead,
gradually work your way toward the goal, and continue to enhance your sed script until your output
looks just the way you want it to. Sed packs a lot of punch, and I hope that you've become very
familiar with its inner workings and that you'll continue to grow in your sed mastery!

developerWorks® ibm.com/developerWorks/

Common threads: Sed by example, Part 3 Page 10 of 10

Related topics

• Read Daniel's previous sed articles on developerWorks: Common threads: Sed by example,
Part 1 and Part 2.

• If you'd like a good old-fashioned book, O'Reilly's sed & awk, 2nd Edition would be wonderful
choice.

• With IBM trial software, available for download directly from developerWorks, build your next
development project on Linux.

© Copyright IBM Corporation 2000
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/developerworks/linux/library/l-sed1.html
http://www.ibm.com/developerworks/linux/library/l-sed2/index.html
http://www.oreilly.com/catalog/sed2/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Muscular sed
	Text translation
	Reversing lines
	Reversal explained
	sed QIF magic
	A tale of two formats
	Starting the process
	Refinement
	Finishing touches
	Don't get confuSed
	Trademarks

