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Abstract. In many practical applications data used for training a machine learn-
ing model and the deployment data does not always preserve the same distri-
bution. Transfer learning and, in particular, domain adaptation allows to over-
come this issue, by adapting the source model to a new target data distribution
and therefore generalizing the knowledge from source to target domain. In this
work, we present a method that makes the adaptation process more transparent
by providing two complementary explanation mechanisms. The first mechanism
explains how the source and target distributions are aligned in the latent space of
the domain adaptation model. The second mechanism provides descriptive expla-
nations on how the decision boundary changes in the adapted model with respect
to the source model. Along with a description of a method, we also provide initial
results obtained on publicly available, real-life dataset.
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1 Introduction

Domain adaptation (DA) aligns different but related domains to leverage all the avail-
able knowledge together. Typically, a source domain with an abundance of training data
is used to enable models to generalize effectively in another domain, called a target do-
main [5]. This capability makes domain adaptation a suitable approach for overcoming
the challenges of limited labeled data in many practical applications, and it has demon-
strated significant success in addressing real-world problems [13]. The main challenge
of DA is how to map both input data distributions, given the data shift between the
source and target domains, into a common latent space. Deep domain adaptation [14],
which covers a lot of recent work, aims at learning this transferable representation us-
ing deep learning. Similar to any deep learning model [1], deep domain adaptation
techniques are considered black-box models, and understanding the adaptation process
between source and target domains is challenging. In particular, explaining the adap-
tation process is an important step in many practical settings for ensuring trust and
acceptance from the end user.
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The success of domain adaptation depends on the difficulty of transferring knowl-
edge from the source domain to a “different but related” target domain [12]. Neither of
these two terms ( “different” and “related”) is generally well-defined; those concepts
highly depend on the task at hand and are often impossible for domain experts, not
well-versed in data science, to grasp fully. Surprisingly, these concepts have received
limited attention in the existing literature [15]. In particular, there is a lack of discus-
sions on these aspects from an explainability perspective – how to convey to humans
key knowledge about the adaptation performed by a model. We claim that explainabil-
ity can help in describing, in a meaningful way, the domains’ variations, discrepancies,
and similarities.

When performing DA, one of the most common techniques is to learn a shared fea-
ture representation that aligns both domains with each other. The final prediction model
operates within this shared feature space. Understanding how this shared feature space
is constructed is crucial to comprehend the differences between the domains and how
the DA model addresses these differences. It is particularly important to focus only on
regions of feature space that affect decision boundary in the adapted model, i.e., regions
from the target domain that are incorrectly classified by the source model; discrepan-
cies that are irrelevant to the decision-making should be hidden not to distract the expert.
The second important aspect of domain adaptation is how the decision boundary dif-
fers between the original model (trained only using the source domain) and the adapted
model (trained using both domains). Given that the additional data is likely to affect
the decision-making, possibly by identifying new discriminative patterns, a full-picture
explanation needs also to highlight those changes.

This paper proposes a model-agnostic explanation, which allows us to analyze the
adapted model from two complementary perspectives explained above. First, it pro-
vides an explanation of the feature extraction process by generating an approximation
of the transform that the DA performs to align two domains. Second, it gives insight
into the changes in a decision boundary in the adapted model, compared to the source
model. This work is the first attempt at explaining the meta-level of the domain adapta-
tion mechanism. The expert can directly use this knowledge to gain more understanding
of the technical aspect of adaptation (model debugging) but also to obtain information
about semantic relations between domains that the adaptable mechanism encoded and
the explainable method revealed (knowledge discovery). For example, if rich knowl-
edge about the source domain exists, but little is known about the target domain, such a
descriptive summary linking source and target domains through the lenses of an adapted
model clearly brings new insights and opportunities for data analysis.

The rest of the paper is organized as follows. In Section 2 we describe current trends
at the intersection of explainable AI and DA. In Section 3 we introduce the theoretical
background of our method and demonstrate it on a simple 2D use-case. The more ad-
vanced case-study that involves explanation of a domain adaptation in the area of net-
work intrusion detection is presented in Section 4. Finally, we summarize our work in
Section 5 and provide future possible extensions and application of our method.
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2 Related Work

Explainable Domain Adaptation has been approached from different perspectives in
the literature. In this section, we focus on the use of explainable methods as a tool for
performing DA. Typically, some explanation is provided for every domain, explaining
the model or data, and then the explanations are used to adapt the domains. In this re-
gard, the authors of [11] propose an explanation-guided training strategy, specifically
focusing on the Cross-domain Few-shot learning mechanism. To achieve this, they uti-
lize LRP (Layerwise relevance propagation) to construct a weight vector that indicates
the relative importance of features in the prediction process and feeds it into the clas-
sifier. By downscaling the weights of features with lower LRP values, they ensure that
the classifier pays more attention to the features deemed more important. The authors
of [18] also employ the concept of explainability, specifically saliency maps, as a tool
for conducting domain adaptation. The proposed method in [18] utilizes saliency maps
to create a strong influence on classifier prediction, forcing it to prioritize attention
to specific regions. As a result of being forced to focus primarily on these salient re-
gions, the model will focus more on features that are domain-invariant while neglecting
features that are domain-specific (such as background information). The emphasis on
domain-invariant features facilitates the mapping of the source and target domains so
that source domain information can be used to make accurate predictions in the tar-
get domain. Such an approach focuses primarily on explaining the domains rather than
explaining how they are adapted.

Designing DA methods that are inherently explainable is another direction, although
very few papers have been published in this area. The proposed method in [7] explains
the prediction of the output of the test samples based on the prototypes of source and
target domains. The method focuses on aligning the prototypes between the domains,
ensuring that prototypes belonging to the same class are closer to each other and farther
from prototypes of other classes. Furthermore, a prototype projection layer is introduced
to map the prototype vectors into visually interpretable images, enhancing human un-
derstanding of the model’s inner workings. Such methods provide explanations for final
predictions. However, they adapt source and target domains according to their prede-
fined rules. Thus, the explanations provided by such approaches are aligned with what
is injected into the DA model for adaptation.

In the paper [16], the authors present a method to explain DA by highlighting the
impact of source samples on predicting a target sample. To achieve this, they intro-
duce an interpretable deep classifier and integrate it into the framework of Domain-
Adversarial Neural Networks (DANN). The classifier works by measuring the distance
between source and target samples resulting in interpretability. In summary, the pro-
posed method provides insights into the role of source samples in the DA process.

All of the aforementioned works focus either on explaining the final adapted model
or using explanations in the process of adaptation to enhance it. In our work, we focus
on explaining the adaptation itself; hence we provide explanations in the form of trans-
form vectors that approximate the adaptation process and describe shifts in decision
boundaries between source and adapted models. In the next section, we describe how
we achieve that in more detail.
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3 Method

In our work, we focus on descriptive explanation mechanisms that capture two aspects
of domain adaptation: domain alignment and decision boundary update. In Figure 1,
we present how our explanation modules fit into the architecture of the most common
domain adaptation model. The first module is responsible for explaining the latent space
adaptation mechanism by providing a transform (or a set of transforms) that the feature
extractor performs on the original data to align source and target domains in the latent
space. The second module is responsible for explaining how the decision boundary
changes in the adapted model in comparison to the source model.
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Fig. 1. Explainability modules in the architecture of the domain-adapted model. The first module
describes the transform performed by the feature extractor in order to align domains in latent
space. The section module describes the changes in the decision boundary.

In both cases, the explanation Φ for an adapted model Ma with respect to the source
model Ms is defined as a vector ΦMs→Ma = (v1, v2, . . . , vn), where vi ∈ R is a
value associated with the feature i. In the case of the feature space adaptation, the
(v1, v2, . . . , vn) represents a transform vector that aligns the source and target domains
in the latent space, while in case of the decision boundary adaptation, the vector rep-
resents the change in the separation hyperplanes in the source and the adapted model.
In the next paragraphs, we describe how the explanations for these two modules are
constructed.

3.1 Explanation of a feature space adaptation

One of the tasks of adaptable models such as DANN is the discovery of latent space rep-
resentation of the input data that makes the source and target domains indistinguishable.
This stage is often referred to as feature extraction because the latent space becomes the
new feature space for both source and target domains. In our work, our aim is to explain
what is an interpretation of such an alignment in the input space, i.e., what transform
(v1, v2, . . . , vn) of the target domain input space makes it indistinguishable from the
source input space.

To solve this problem, we first select unaligned samples from source and target
domains. We are interested in samples Xe = {xi ∈ Xs ∪Xt : Ms(x1) ̸= Ma(xi)},
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where Xs are source domain samples and Xt are target domain samples. Next, we build
a classifier C that is trained to distinguish samples from Xe as either source domain
samples or target domain samples. In this step, we do not use latent space representation
of the samples, where they are indistinguishable, but operate on original input space.

Based on the classifier C, we define counterfactual sub-spaces for each sample from
the target domain. The counterfactual subspace for a sample xi : C(xi) = l is a set of
samples Xi

cf ⊆ Xe such that for the majority of samples from Xi
cf the C(xj) ̸= C(xi).

The counterfactual sub-spaces are constructed with LUX explainer [2], which uses a
decision tree to partition input space into homogeneous areas with respect to class label
and returns counterfactual sub-spaces by traversing the decision tree in a search for
partitions that contain a majority of samples from opposite class, i.e., C(xj) ̸= C(xi).
It is worth noting that we do not define a counterfactual as the nearest sample from the
input space with the opposite class label, as this approach is prone to noise. Instead,
we are interested in finding all of the groups of counterfactual samples, which form
more stable and representative counterfactuals than single nearest instances. This is
also motivated by the fact that later in our method we move the analysis to the latent
space, where similarities from input space do not have to be preserved. This step can
also be used to obtain an explanation of the differences between the domains in the
input space, as shown in Figure 2.

In the subsequent step, we transform each sample xi and its associated counterfac-
tual subspace Xi

cf into latent representations, becoming xi and X
i

cf respectively. Then

we select the nearest neighbor xcf ∈ X
i

cf of xi, which now forms a pair (xi, xcf )
and so can be easily traced back to its original input space representation (xi, xcf ). Fi-
nally, for each sample, we calculate the transform vector (v1, v2, . . . , vn) as a difference
between its real representation and the real representation of a nearest latent counter-
factual: xi − xcf . Due to the fact that the transform performed in the adaptation model
might not be linear, we cluster detected instance-based transforms according to cosine
similarity as depicted in Figure 2.

In the case of low-dimensional space, the visualization as presented in Figure 2 is
satisfactory as a way of presenting the explanation. In higher-dimensional spaces, we
adapted the SHAP waterfall plots to depict the transformations. In Figure 3, the example
waterfall plot for the transform of one of the clusters from Figure 2 is presented.

It is worth noting that the waterfall plot from Figure 3 transfers the information
about the counterfactual explanations, as it is built based on the counterfactual sub-
spaces Xcf discussed earlier in this section. In other words, the transform depicted in
the plot is a generalized version of a counterfactual explanation for a whole cluster of
data.

The transform clusters defined in this stage are used as input for the phase of ex-
plaining the decision boundary adaptation.

3.2 Explanation of a decision boundary adaptation

In the explanation of a decision boundary adaptation, we focus on describing how the
decision boundary changed between the source model Ms and the adapted model Ma.
The decision boundaries of Ms and Ma are assumed to be non-linear and possibly
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Fig. 2. Visualization of a transform-based explanation for feature space adaptation. On the left-
hand side, there is a decision tree generated by the LUX algorithm that divides the space into two
homogeneous subspaces and helps in defining counterfactuals. On the right-hand side, there are
transforms in the input space, conditioned on their representation in latent space.
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Fig. 3. Visualization of a transform-based explanation for feature space adaptation with SHAP-
like waterfall plot. Three important pieces of information can be read from the plot: 1) how many
transform clusters are there in the data 2) what are cluster centroids defined by the origins of bars
in the plot, and 3) the transform itself depicted as colored bars which define a shift in dimension
represented by a particular feature.



Towards Explainable Deep Domain Adaptation 7

complex; therefore, we approximate it locally with a linear interpretable model such as
LIME. To achieve that, we use transform clusters defined in previous steps as initial
samples for which we calculate two approximations of decision boundaries with a local
linear surrogate model: one for Ms and one for Ma. As a result, we obtain two vec-
tors of coefficients (θs1, θ

s
2, . . . , θ

s
n) and (θa1 , θ

a
2 , . . . , θ

a
n) which define the hyperplanes

perpendicular to them. Such a situation for the toy example used in this section is pre-
sented in Figure 4. The yellow lines represent decision boundaries for the source model
(solid line) and the adapted model (dashed line). The other straight lines represent the
linear approximations of the decision boundaries for particular transform cluster points
(different colors for different transform clusters). The arrows are associated with each
transform clusters and are vectors perpendicular to the decision boundary, which lo-
cally approximate the Ms and one for Ma boundaries. From the visualization of the
vectors, one can immediately notice that for both of the transform clusters, the decision
boundary has flipped by more than 180 degrees.
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Fig. 4. Linear approximations of decision boundaries for Ms (solid line) and Ma (dashed lines)
and corresponding vectors that define these hyperplanes. Arrows represent the contribution of
features according to LIME for clusters of transforms. Dotted lines – adapted model, solid lines
– source model.

Although such a visualization is straightforward for simple cases, it becomes infea-
sible for the multidimensional case. In such a situation, we adapted the summary plot
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from SHAP plots that shows the variant and invariant features for the domain adapta-
tion procedure, as shown in Figure 5. The smaller the value associated with the feature,
the smaller the change of the decision boundary related to this feature in the source
and adapted models. For instance, in Figure 5 one can observe that for both transform
clusters the x2 attribute is considered invariant, while x1 variant feature. This means
that the biggest change in the decision boundary in the adapted model was made along
the feature x1, which is also visible in Figure 4.
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Fig. 5. Summary plot for decision boundary comparison presented in Figure 4. The low values
are associated with invariant features, while high values denote the variant features.

In the following section, we demonstrate the method on a real-life, multidimen-
sional dataset.

4 Case study

For the evaluation study, we selected real-life multidimensional datasets, CICIDS17
[9] and InSDN [4], from the computer network security area. These two datasets are
collected using the same network monitoring tools resulting in homogeneous feature
sets [17]. Despite sharing the same feature set, these two datasets differ greatly from
one another due to two factors: they are collected from two different networks, and the
existing attacks in each dataset are different. This characteristic of these datasets makes
them suitable for performing DA. As a source domain dataset, we used the CICDS17
dataset, and as a target domain dataset, we used the InSDN dataset.
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Datasets include samples for different attacks (5 attacks) that can be used for mul-
tilabel network intrusion classification. However, in order to have the same label set
in different domains (while keeping the divergence between them), we changed it to
binary classification. We altered the labels of all of the different types of attacks to be
abnormal state focusing on building a classifier that distinguishes this state from normal
state.

First, we trained a model on the source dataset (CICIDS17) and evaluated it on both
source and target dataset (InSDN). We obtained F1 scores of 0.96 (macro average 0.95)
and 0.22 (macro average 0.25), respectively, which indicated that in order to achieve
adequate performance on the target dataset, an adaptation to a new domain is required.
We used the CCSA algorithm [8] to perform the adaptation and achieved F1 scores for
the source and target domain of an adapted model equal to 0.96 (macro average 0.96)
and 0.99 (macro average 0.99), respectively, proving that the adaptation was performed
correctly.

Next, we applied our method to explain the adaptation process. We distinguished
the sets of samples Xe from the target domain that are misclassified by the source
model. Then we created the interpretable classifier C (the left plot in Figure 6) that
distinguishes between the domains in the input space. This classifier was later used to
generate the counterfactual sub-spaces Xi

cf based on which we obtained explanations
in the form of cluster transforms. The generated cluster of transforms are presented in
the right-hand graph in Figure 6.
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Fig. 6. Explainable decision tree (on the left) describing the most discriminative feature that al-
lows for distinguishing between source and target domains. Transform visualization for the top
five most important features (on the right) depicting how the adaptation aligns domains in a fea-
ture space.

From these results, several conclusions can be drawn. First, the most discriminative
feature that makes the two domains different is the Fwd_Seg_Size_Min feature. In
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the target domain, the value of this feature is much lower than in the source domain.
Our method detected five distinct cluster transforms (the optimal number of clusters
was obtained by the analysis of silhouette score and K-means clustering). These clusters
depicted in the waterfall plot in Figure 6 show how samples from the target domain are
transformed to the source domain in the input space.

It can be seen that Fwd_Seg_Size_Min, the most discriminative feature, is not
present as the most important feature in the transforms-based explanations. One can
conclude that the domain alignment that is performed in the latent space is a much more
complex operation, and it cannot be derived only by looking at the differences between
the samples in the input space. Furthermore, the cluster transforms reveal additional
information on how the alignment is done with respect to the semantics of the samples.
For instance, the datasets used by us in this case study were originally multi-labeled
datasets, which we converted to a binary classification problem. Each of the labels in
the original dataset corresponded to an attack performed on the network infrastructure,
which we interpreted as anomalous behavior.

We traced back which classes from the original dataset were mapped with each
other by the domain adaptation mechanism; it appeared that the only class from the tar-
get domain that was incorrectly classified by the source model was ’DDoS’ attack. Ad-
ditionally, by analyzing instances linked by the transforms obtained from our method,
we discovered that the ’DDoS’ attack from the target domain (which was missing in
the source domain) was aligned with the ’Patator’ attack in the source domain (not
present in target domain). Such information can be used by the expert to judge whether
the alignment performed by the domain adaptation mechanism is consistent with back-
ground knowledge. In this case, one can argue that this alignment does make sense,
as the ’Patator’ attack, which is a brute-force password cracking mechanism, may re-
semble DDoS or DoS attacks. The transform clusters give more details on how such
alignment was performed. For example, when analyzing the cluster transform 1 in Fig-
ure 6, we can observe that there exist several features for which the transform was
minimal, such as Init_Fwd_Win_Byts or ACK_Flag_Cnt. This means that sam-
ples from source and target domains had similar values for these parameters. According
to the analysis of the source domain dataset [10], these features happen to be the most
important features for identifying ’Patator’ attacks. Thanks to transform clusters and
available knowledge about the source domain, we can derive a conclusion that the type
of attack that is associated with cluster transform 1 resembles ’Patator’ attacks from the
source domain, and the alignment done by the adaptation mechanism is semantically
sound.

In Figure 7, linear decision boundaries approximations for source and adapted model
for cluster transform 1 was presented. It can be seen that the biggest difference between
decision boundaries (right plot) is observed in features related to the number of pack-
ages sent over the network per second. This is again consistent with the background
knowledge about the difference between ’Patator’ and ’DDoS’ attacks. The former is
performed from a single computer, and the latter is a distributed attack that results in
larger packet intensity.

Similarly to transform cluster analysis, the feature which is the most discriminative
from the perspective of data distribution (i.e. Fwd_Seg_Size_Min) is not present as
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Fig. 7. Linear decision boundary approximation in source model for transform cluster 1 (left plot).
Linear decision boundary approximation in the adapted model for transform cluster 1 (middle
plot). Variant and invariant features between domains (right plot).

important in decision boundary explanations. Because the model fits decision boundary
with a different objective than separating domains, this suggests a conclusion that do-
main adaptation explanation cannot be done purely based on data distribution analysis.

5 Summary

In this paper, we proposed explainability mechanisms for feature-based domain adap-
tation algorithms. The explanations provide two complementary perspectives on the
domain adaptation process: (1) feature alignment and (2) decision boundary updates.
Our initial investigation has shown that it is not enough to look at domain adaptation
through the perspective of differences between data distributions of source and target
domains. Instead, looking deeper into how these distributions are aligned by the adapta-
tion mechanism and observing in which directions the decision boundaries are changing
can give a new opportunity to relate the two domains on a more semantic level and open
the possibilities to transfer background knowledge from the source to the target domain.

Although the work presented in this paper contributes the most towards the theo-
retical analysis of XAI applications in the domain adaptation area, the potential prac-
tical value is much broader. One of the possible applications of the method we pre-
sented herein is to distinguish domain shifts from anomalies in a data-stream scenario.
The problem of differentiating between these two phenomena in data streams was re-
cently reported in [6]. The usage of explainable domain adaptation can help in detecting
anomalies or failures in industrial applications, separating them from domain shifts.

Furthermore, in the case of consecutively changing domains, especially in indus-
trial settings, where each domain represents a new generation of products or processes,
one can use explainable domain adaptation to build a predictive model on top of the
discovered feature adaptation transforms and use it to tune future new models better.

Finally, one of the important research paths related to explainable domain adaptation
is exploring more sophisticated ways of visualizing explanations. We plan to evaluate
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methods that are more interactive and better suited for multidimensional dataset anal-
ysis, such as interactive parallel coordinate plots (IPCP) [3], and combine them with
explanations obtained from our method.
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