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Industry 4.0

INDUSTRY 2.0

INDUSTRY 1.0

Mechanization,
steam power,
weaving loom

Mass production,
assembly line,
electrical energy

INDUSTRY 3.0

Automation,
computers and
electronics

INDUSTRY 4.0

Cyber physical
systems, internet of
things (loT),
networks
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https://www.presentationpoint.com/blog/data-signals-triggers-industry-4-0/

Let us have an Industry 4.0 factory!
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Source: Cimini, C.; Pirola, F.; Pinto, R.; Cavalieri, S. A human-in-the-loop manufacturing control architecture for the next generation of
production systems. Journal of Manufacturing Systems 2020, 54, 258-271. doi:https://doi.org/10.1016/j.jmsy.2020.01.002.




Source: Presentation @ DSAA2021 l
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Knowledge discovery from industrial logs

* PACMEL Project Big Data Semantic Data
(http://pacmel.geist.re)

* Industry 4.0: everything is
measured

* Low-level measurements to higher-
level states

* Expert-defined statesvs.
Automatically discovered states
e Data comes with no labels

* Expert may be to general, or too
specific
* There is a lot of measurements

Interpretation of measurements
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Knowledge discovery from industrial logs

* PACMEL Project
(http://pacmel.geist.re)

* Industry 4.0: everything is
measured

* Low-level measurements to higher-
level states

* Expert-defined statesvs.
Automatically discovered states
e Data comes with no labels
* Expert may be to general, or too
specific
* There is a lot of measurements

Unsipervised learning

State0 Statel
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Knowledge discovery from industrial logs

* PACMEL Project
(http://pacmel.geist.re)

* Industry 4.0: everything is
measured E

* Low-level measurements to higher- “sensor IR Sensor

level states “Sensor JE Sensor |
“Sensor _ E " Sensor

Moving
backward

_
1

Expert

* Expert-defined states vs. I

Automatically discovered states voving
 Data comes with no labels forward

* Expert may be to general, or too
specific

* There is a lot of measurements


http://pacmel.geist.re/
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Theoretical states are given by the expert
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State

set movingLeft

set movingRight

set cuttingLeftBegining
set cuttingLeftMiddle

set cuttingLeftEnd

set cuttingRightBeginning
set cuttingRightMiddle

set cuttingRightEnd

set stoppagelnOModeBeginn...

set stoppagelnOModeMiddle

set stoppagelnOModeEnd

Add condition | Add decision | Add rule
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Knowledge discovery from industrial logs

* PACMEL Project
(http://pacmel.geist.re)

* Industry 4.0: everything is measured

* Low-level measurements to higher-
level states

* Expert-defined statesvs.

Automatically discovered states
e Data comes with no labels

Moving
backward

Expert

* Expert may be to general, or too specific

Moving
forward
* There is a lot of measurements
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Knowledge discovery from industrial logs

* PACMEL Project
(http://pacmel.geist.re)

* Industry 4.0: everything is
measured

* Low-level measurements to higher-
level states

Expert

* Expert-defined statesvs. I I

Automatically discovered states L |
. g Turning
e Data comes with no labels right back

* Expert may be to general, or too
specific

* There is a lot of measurements
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How to confront expert and automatic labelling?

* Analysis of each of the states separately via
contingency matrix

— 80000
Cutting_left_beginning
L]
e Adjusted rand score
Cutting_left_end
- . . - 60000
° AdJUStEd mutual info score e N
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]
. 5
* Consistenc : o s
o Cutting_right_middle 30000
Stoppage_in_0O_mode_beginning
* V-measure
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e e Stoppage_in_0_mode_middle . 0 14191 O
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Knowledge Augmented Clustering (KnAC

Data
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Augmenting Au tomatic Clustering with Expert Knowledge and Explanations
S. Bobek, G.J. Nalepa, International Conference on Computational Science, 631-638

recommendation  recommendation

KnAC: an approach for enhancing cluster analysis with background knowledge and
explanations, S. Bobek, M. Kuk, J. Brzegowski, E. Brzychczy, and G. J. Nalepa.
ArXiv: https://axiv.org/abs/2112.08759

https://github.com/sbobek/knac


https://arxiv.org/abs/2112.08759

Knowledge Augmented Clustering (KnAC
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Augmenting Automatic Clustering with Expert Knowledge and Explanations

S. Bobek, G.J. Nalepa, International Conference on Computational Science, 631-638 .
recommendation

KnAC: an approach for enhancing cluster analysis with background knowledge and
explanations, S. Bobek, M. Kuk, J. Brzegowski, E. Brzychczy, and G. J. Nalepa.
ArXiv: https://axiv.org/abs/2112.08759


https://arxiv.org/abs/2112.08759

Expert [abels vs. Clustering labels

Expert clustering

Automated clustering

* Split expert clusters into
more specific ones

* Merge expert clusters that
seem to be similar

* It is an iterative approach

https://github.com/sbobek/knac



Expert [abels vs. Clustering labels

* Split expert clusters into
more specific ones

* Merge expert clusters that
seem to be simillar

* It is an iterative approach
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https://github.com/sbobek/knac



Splitting expert cluster

* We calculated entropy of each
cluster distribution with respect
to expert labels

 We scaled rows of distribution
matrix to deal with different
sized expert clusters

e We divided normalized matrix
with entropy values

* The split confidence was
calculated by averaging each
row of such matrix

Expert
Cluster 1

Expert
Cluster 2

Expert
Cluster 3

Expert
Cluster 4

C1l

400

1000

200

600

C2 C3
0 1
1000 1000
0 3
0 10

Mi j

C4



Splitting expert cluster

* We calculated entropy of each
cluster distribution with respect
to expert labels

 We scaled rows of distribution
matrix to deal with different
sized expert clusters

e We divided normalized matrix
with entropy values

* The split confidence was
calculated by averaging each row
of such matrix

Expert
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Expert
Cluster 4

Hspl it
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Splitting expert cluster

* We calculated entropy of each
cluster distribution with respect
to expert labels

 We scaled rows of distribution
matrix to deal with different
sized expert clusters

 We divided the scaled matrix
with entropy values

* The split confidence was
calculated by averaging each row
of such matrix




Merging expert cluster

e We calculated /12 normalized
distribution matrix

* We calculated cosine similarity
between rows to denote expert
clusters that were similarly
splitted with automated
method

Hmerge
;]

Expert
Cluster 1

Expert
Cluster 2

Expert
Cluster 3

Expert
Cluster 4

M ;

1Mi]]2

C1 Cc2 C3 C4
400 0 1
1000 0 1000 0
0 0 3
60 0 60 0

Expert clusters 2 and 4 are
simmilarin their distribution
in automated clustering



Merging expert cluster

e We calculated /12 normalized
distribution matrix

* We calculated cosine similarity
between rows to denote expert
clusters that were similarly
splitted with automated
method




Results - splits

Decrease in silhouette
score between splitted
clusters

Expert clustering Automated clustering

Hspiie and Hierge

Assuming AS =0.1

0.055 0.000
0.020 :
" SPLIT EXPERT CLUSTER
0.010 1.000 0.000 -
100 51
0000 0000 [N INTO CLUSTERS
S - [(C 1, C 2)]

(Confidence 0.87)



Results - merges

Expert clustering Automated clustering Hspiie and Hierge
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CLUSTER C_O # (Confidence 0.98)



Knowledge Augmented Clustering (KnAC

Data
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Recommend
and explain
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Augmenting Automatic Clustering with Expert Knowledge and Explanations
S. Bobek, G.J. Nalepa, International Conference on Computational Science, 631-638

recommendation  recommendation

KnAC: an approach for enhancing cluster analysis with background knowledge and
explanations, S. Bobek, M. Kuk, J. Brzegowski, E. Brzychczy, and G. J. Nalepa.
ArXiv: https://arxiv.org/abs/2112.08759

https://github.com/sbobek/knac


https://arxiv.org/abs/2112.08759

Why XAl is non trivial

In an act of explaining, someone who is in possession of some information

Artificial intelligence Feature contribution

about the causal history of some event - explanatory information,

Why input to the model generated
such output

| shall call it - tries to convey it to someone else.

Human
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How to use XAl in KnAC?

Expert clustering

Automated clustering Hepy and Hpnerge
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 Split: What makes the two new
clusters different from each
other to convince expert they are
different entities?

* Merge: What makes the two
expert clusters different from
each other to convince expert
that they are the same entity
(difference is irrelevant)



From clustering to classification

e Transformations
e Feature extraction

e Deciding on number of clusters
* No limits on the clustering algorithm

v

e Transform clustering into classification
» Use cluster labels as target class
CEESIeEel o Use features understandable by the user

e Apply XAl methods to obtain reason why two clusters are different

Explanation



Explanations of splits

Expert clustering Automated clustering

Hspiie and Hierge

0.055 0.000

0.020 Ny
w
0.010 peSsldel 0.000

0.000 0.000

1: x1 <= -0.30 (Precision: 0.99, Coverage: 0.49)
2: x1 > -0.30 (Precision: 1.00, Coverage: 0.49)

SPLIT EXPERT CLUSTER

E 1
INTO CLUSTERS
[(C_1, C_2)]

(Confidence 0.87)

value = [95, 100]

x1 <=-0.903
gini = 0.5
samples = 195

class = 2

True

False




Explanations of merges

MERGE
EXPERT CLUSTER E_O
Expert clustering Automated clustering Hapit and Hpmerge WITH
EXPERT CLUSTER E_3
INTO
CLUSTER C 0
(Confidence 0.98)

X2 <= -5.065
0.000 gini = 0.469
| e
0.010 0.000 | g class = 3

True \an]se

gini = 0.346
samples = 45
value = [35, 10]
class = 0

x]l <= -8.20 AND x2 > -4.34 (Precision: 1.00, Coverage: 0.07)

E O:
E 1: x1 <=-4.34 (Precision: 0.90, Coverage: 0.25)




Explainable clusters

Feature 2, F2

0- | ' 0 0 D ) |
-15 -10 -05 00 05 10 15 20 25
Feature 1. F1

(b) Make blobs 3d dataset - KDTree query
describing method.

Feature 2, F2

4s -lo -0s oo 05 10 15 20 25

Feature 1, F1

(¢) Make blobs 3d dataset - Isolation For-
est describing method.

Feature 2, F2

= 1 2
Feature 1. F1

Feature 2, F2

-2 0 2
Feature 1, F1

m—a_ Certainty

(a) Make moons dataset clusters visualiza- (b) Make moons dataset - K-medoids de- (c) Make moons dataset - Corners describ- 1 F1>0.68 and F2 >2.99 0.48
tion. scribing method. ing method.
= 2 0.68<F1<1.77 and F2 > 1.64 0 0.64
5 o3 E os 5 05 3 -1.14<F1<1.77 and F2 >1.64 0 0.54
§ 00 if? § 00 E o2
. 7. 4 F1>0.68 and F2 <2.99 1 0.44
o e veiand
=10+ " r 3 ; 10 | ! -1.0 : r :
4 o i : A O 2 4 U ot : 5 F1>-1.14 and F2 £ 1.64 1 0.68
(d) Make moons dataset - Middle points (e) Make moons dataset - Maximum dis- (f) Make moons dataset - Alpha shape
describing method. tance describing method. describing method. 6 F1<-1.14 2 0.25
7 F1<0.68 and F2 £2.99 2 0.43

M. Kuk, S. Bobek and G. J. Nalepa, "Explainable clustering with multidimensional bounding
boxes," 2021 IEEE 8th International Conference on Data Science and Advanced Analytics
(DSAA), 2021, pp.1-10, doi: 10.1109/DSAA53316.2021.9564220.



Fast cutting
Slow cutting
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E-commerce and coal mine

Die-Cast & Toy Vehicles > Toy Vehicles & Accessories > Scaled Models > Vehicles -
Figures & Playsets > Science Fiction & Fantasy -

Puppets & Puppet Theatres > Hand Puppets

Characters & Brands > Disney > Toys -

Dolls & Accessories > Dolls' House Dolls & Accessories > Dolls' House Accessories -
Games > Card Games -

Hobbies > Trading Cards & Accessories > Packs & Sets

Characters & Brands > Star Wars > Toys -

Fancy Dress > Accessories > Temporary Tattoos -

Sports Toys & Outdoor > Kites & Flight Toys

Jigsaws & Puzzles > Jigsaws

Games > Educational Games

Hobbies > Remote Controlled Devices > Parts & Accessories -

Arts & Crafts > Children's Craft Kits > Bead Art & Jewellery-Making -
Dolls & Accessories > Soft Dolls -

Hobbies > Model Trains & Railway Sets > Rail Vehicles > Trains

Games > Dice & Dice Games

Figures & Playsets > Knights & Castles -

Figures & Playsets > Accessories -

Hobbies > Model Building Kits > Tanks -

Characters & Brands > Hasbro 4

Hobbies > Remote Controlled Devices > Helicopters & Quadcopters
Die-Cast & Toy Vehicles > Toy Trains & Accessories > Toy Trains & Sets -
Arts & Crafts > Art Sand -

Jigsaws & Puzzles > Brain Teasers

GL
00T
T4
- 0GST
SLT
00¢

fiobayieoqns pue Ailobayied uaalb ul syonpoud Jo Jaquinp

Product to category

Chuggington is an action-packed contemporary animated train series for pre-schoolers that follows the exciting adventures of three young
trainees: Wilson, Brewster and Koko. In each energetic, vibrant episode, the trainees ride the rails through the world of Chuggington, exploring
many locations and taking on exciting challenges that test their courage, speed and determination. With the help support and guidance of the
more experienced Chuggers, they learn positive values, including respect and loyalty, and new skills such as teamwork and patience,
empowering them to be the best trainees they can be. Box Contains 1 x Chuggington Train ”



E-commerce and coal mine

See the results at online tutorial: https://github.com/sbobek/knac

C»

Justification for Arts & Crafts = Art Sand

[(*sand', -0.14062779721924624), ('kinetic', -0.04427780308500065), ('squeezable', -0.023407082689875347), ('shape’', -0.011500639821694475), ('fun', ©.0103043090148735:
Prediction probabilities rts & Crafts >(arrSamds & Brands > Disney

“Text with highlighted word
Arts & crafts >... [ d.s6 ext with highlighted words

have hours of fun with this magic Bl playset creating brilliant B8llll shapes or create your own sculptures the magic il
Characters & B... |1 0.14 is the squeezable B#llll where you can feel the fun pack it pull it shape it and love it motion B8l is so incredible you can
put it down it kinetic meaning it sticks to itself and not to you it easy to shape and mould and flows through your fingers
like slow moving liquid but leaves them completely dry kinetic i stimulates children creative skills allowing them to
create anything they can imagine it never dries out and is gluten free this soft and stretchy B8l easily cleans up while
delivering non stop fun it squeezable B8l you can put down for ages years and over

Justification for Characters & Brands = Disney = Toys

[('disney’, ©0.027092040859663918), ('soft', -0.008068585098757642), ('character', 0.006040355286770795), ('characters', 0.004645787316197593), ('kids', 0.0043490668605"

Prediction probabilities rts & Crafts >(AurrSamds & Brands > Disney
disney Text with highlighted words
Arts & Crafts >... io.03 L - - . .
woft product description whether at home on the road or in the air your favourite diSfiey character can provide great companyand
Characters & B... [EEENIN]0.97 0.1 comfort these soft colourful cushions can be easily transformed into @iSfiey character soft toy by simply opening and closing
character the velcro loved by children of all ages these classic characters will keep kids entertained for hours and when sleepy
°-r°L] just rest your head on the cushion and dream away all our character cushions are washable please read washing label
E_D;mcms for further instructions box contains x
kids
0.00
easily
0,001




How to explain? Which explanation we should trust?

SM_Shearertocation. 2019-06-03, cluster 4

RCD_BearingTemperature, chister: 1 (mode: mulM, train)

x2 <= -5.065
| U gini = 0.469
— = = o ' samples = 101
; = - & B value = [38, 63]
=1 class = 3
— ANCHOR True False
- e " RHD. EngineCurr = 4165 HD_LefiHaulageTemp = 61 74 RCD_Average3Curr = 7335 SM_ShEﬂ.I'ErSﬂ‘BEd =200 AND
(RCD_AverageThree-phaseCurrent LOW OR T
RCD_AverageThres phaseCurrent MEDIUM OR gini = 0.346
RCD_AverageThree-phaseCurrent_HIGH OR =
o samples = 45
(RHD_EngineCurent IDLEOR value = [35, 10]
RHD,_EngineCurrent_LOW)
(LCD_Average Three-phaseCurrent_IDLE OR class =0

(66.00 < RCD_Avera... 55.00 < LHD_Left..,

NOT 9
22.00 < RHD_Engin...
23.00 < LHD, }:ng:.

LCD_Av rmg!‘l')lrw—;m
LP_AverageTree-ph..

66.00 < RCD_Avera,

[23.00 < LHD_Engin...

I66.00 < RCD_vera..
D_Average Three-p... [23.00 < LHD_Engin..

[22.00 < RHD_Engin. .
o boon

Feature Value

o0
55.00 < LHD_LeftH. LCD_AverageThree-p,
e Joun

[22.00 < RHD_Engin. .

RHD_RightHaulageDriveftractor) Temperature{gearbox) = 0.00 AND
{LHD_EngineCurrent_IDLE OR LHD_EngineCurrent_LOW) AND

43.00 < LA_LeftArmTemperature <= 52.00 AND
LHD_LeftHawlageDrive(tractor)Temperature(gearbox) = 65.00 AND
RA_RightArmTemperature == 54.00 AND LP_AverageThree-phaseCurrent
<= 4.00 AND

57.00 = RCD BearingTemperature <= 64.00



Intelligible XAl (InXAl)

Model
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Explanation
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Explanation
2

Explanation
3

Explanation
1

Model
2

Explanation
2

=
S

Explanation
3

Evaluation

Combining

Tuning

https://github.com/sbobek/inxai

InXAl




Consistency between explanations for
diferent models (or explainers)
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Stability of explanations for similar instances
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Quality Loss (AUCX

LSTAT +3.87
RM
DIS

Perturb

AGE

data accordingly

CRIM

NOX

PTRATIO

TAX

B

Sum of 4 other features

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
mean(|SHAP value|)

Loss of accuracy

Loss of accuracy
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0z
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00
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Ensemble explanations

Confidence of explanation
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Ensemble explanations
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Anomaly detection in hot- and cold-rolling process




Anomaly detection in hot- and cold-rolling process

Hot-rolling process

. After casting a steel slab has
dimensions of approximately 0.22m x
1.5m x 10m.

» Further processing is needed to obtain
the shape and dimensions required by

the clients. -

walking beam
furnace

laminar cooling

roughing mill finishing mill section




Anomaly detection in hot- and cold-rolling process

Cold-rolling process

« Optional production step after hot rolling.
« Used to reduce the thickness of steel strip without preheating by

30 to 80%.

« Use-case production line consists of four stands, which reduce
|




Anomaly detection in hot-rolling process
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https://colab.research.google.com/drive/178rIVHqbHuFtwnimDeG3L6DdRtY5UndR?usp=sharing

Anomaly detection in cold-rolling process
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Counterfactuals!

Metric AE PIAE

Test Validation Test Validation
Accuracy  36.0% 31.2% 82.1% 79.9%
Precision  36.1% 30.2% 72.6% 61.1%
Recall 97.9% 100.0% 82.0% 88.9%
F1 52.7% 46.4% 77.0% 72.4%

J. Jakubowski, P. Stanisz, S. Bobek and G. J. Nalepa, "Roll Wear Prediction in Strip Cold Rolling with Physics-Informed Autoencoder and Counterfactual
Explanations,” 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, China, 2022, pp. 1-10, doi:

10.1109/DSAA54385.2022.10032357.
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Towards Online Anomaly Detection in Steel Manufacturing Process

The task is to detect anomaliesin streaming data from cold
rolling process. Several issues are addressed in this paper:
- product mixis heavilyimbalanced (resampling)

- concept drift detection

- onlinelearning algorithms are compared with batch learning |
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Towards Online Anomaly Detection in Steel Manufacturing Process

We train ML models to predict selected rolling
parameterse.g. rolling forces.

The assumption for the outlier detection is that
if the measurement differ significantly from
model prediction, the anomalyalarm is raised.

Different approaches towards learning process
were used to determine optimallearning
strategy:

e Batchlearning

* Batchlearning with concept drift detection
* Onlinelearning

Paper accepted for ICCS 2023 conference.
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Understanding Survival Models through Counterfactual Explanations

e Simple survival models e.g., Cox Proportional
Hazards (CPH), are inherently interpretable.

* There exist several adaptations of state-of-the-art
ML methods for survival analysis e.g., Random
Survival Forest or SVM, which require
explanationsto understand reasons behind the
prediction.

e Survival models return curves rather than point
estimates, which make them more difficult to
interpret.

* Work in cooperation with Halmstad University
* Submitted to DSAA 2023 PRAXAI
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Understanding Survival Models through Counterfactual Explanations

* We propose a method to generate likely and actionable counterfactual

explanationsfor survival models.

» Actionabilityis achieved by making selected features immutable, e.g., age.

* Likelihoodis achieved by using autoencoderto learn the datarepresentation.
The reconstruction error is then included in the loss function.

* Two distinct approachesare presented - one with transforming survival
functionsinto survival scores (regression) and the second with survival

patterns discovery (classification)

Data
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(Dimensionality Patterns
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Fig. 1: Patterns discovery Workflow

Survival
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Featureimportance as a tool for root cause analysis in time-series events

Supervised problem ] [ Unsupervised problem ]

|
[ Train classifier model

Y

Train SHAP model

—

—\

Paper accepted for publication:

Feature importance as a tool for root cause analysis in time-series events

Michat Kuk, Szymon Bobek, Bruno Veloso, Lala Rajaoarisoa and Grzegorz J. Nalepa
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE
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The aim of the work was to demonstrate how the analyses of Shap
values near the occurrence of failures can help identify the specific
features that led to the failure.
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Post-hoc prototype generation and explanation of time series classification
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. Segment SHAP values with changepointdetection

60 80 100 120 140

80 100 120 140

3. Use SHAP segments as mask over real TS &

cluster TS segments
' ' i

i

3. Build and explainable clssifier based
on cluster presence in particualr TS

.
-
*-10
,’ ®nf=0 34
R
aclass
o @ 0[0.89)

1011
° 11

Blackbox model: 0.89 Acc
Decision tree: 0.88 Acc

g
Q
*
Q
*
Q >=10
o onf=0.11
K
S class A4 class class |
. 0{0.63) 0{0.95] 0[0.88]
*% 10037 10.05] 100.12]
. |
>=10
conf=0.14
class class class class
0{0.01] 0[0.09] 0[0.4] 0{0.0)
10.96] 1[081] 1{06] 11.0]




Post-hoc prototype generation and explanation of time series classification

The purpose of the work is to extract segments from a
time series, and then apply a change point detection
algorithm that explores segments based on shape values
and uses this information to explain specific parts of the
time series.

The methods should present better rules that should be
more understandable to humans, the rules should not be
sensitive to small changes in signal values, and the
designated prototypes will be able to easily distinguish
normal cases from abnomal ones.

Normal cases

Signal value

Cases affected by different arrhythmias and myocardial infarction

0 ) 100 120 140
Time

Marked segments which were indicated by the

Signal value

Time

generated rules (LUX algorithm) presented on all
analyzed cases.

In this case, the explainable algorithm found the segment which the
most differentiates the normal and sick cases. The indicated segments
could be treated as a prototype which in a human understanding way
presents why the algorithm classifies the signal for normal or not
normal ECG.



DAXAI: Explainable Domain Adaptation
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Summary

* Knowledge Augmented Clustering (KnAC)
* Local Uncertain eXplanbations (LUX)

* Intelligible XAl (InXAl)

* Technology needs to be human-centric

* Explanations are important for unsupervised methods
(KnAC/Explainable clusters)

e The truth is out there



Open Challenges in XAl for (not only) Industry 4.0

* Mediating explanations between human and XAl system.

e Explanation is an act of conveying knowledge

e Technology needs to be human-centric. Good explanation does not always
mean useful or understandable

* Defining mediatable information granules via human-in-the-loop
conceptualization.

* Semantic gap between XAl and different explanation addressee (stakeholders)

* Multi-faced continuous assessment of quality of explanations.
* Why should | trust... your explanation
* Correlation does not mean causation



Thank you for your attention!

Give us a feedback @ https://github.com/sbobek/knac

JAGIELLONIAN UNIVERSITY
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