
Inherently interpretable models
Szymon Bobek

Jagiellonian University
2024

https://geist.re



Clever Hans

• Clever Hans, a horse, amazed audiences with 
apparent intelligence in early 1900s Germany.

• Claimed to solve math problems and answer 
questions.

• Drew significant public attention and curiosity 
about abilities.

• Attracted interest from scientists and 
psychologists studying cognition.

• Ultimately revealed reliance on subtle human 
cues, not intelligence.

"If the eighth day of the month comes on a Tuesday, 
what is the date of the following Friday?" Hans 
would answer by tapping his hoof eleven times.
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Glassbox vs Blackbox 
Intrerpretability vs Explainability
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Interpretability

It is a property of a 
model

Interpretable models 
can provide 

explainability

Explainability

It is a property of a 
decission process

Explainability can be 
achieved even for 
not interpretable 

models



Local vs Global explanations

Local 
explanations

Global 
explanations



Locally and globally interpretable models
For a single instance it might 
be possible to interpret the 

model, but globally it 
might be difficult to grasp 

the model behaviour easily.

The model is simple 
enough to interpret it 

globally
• Interpretability does not guarantee 

understandability!
• It depends on many factors



Linear regression



Linear regression

X1 = 150 ft2, y1 = 300 000 $

X2 = 150 ft2, y2 = 150000 $

X3 = 300 ft2, y3= 1 000 000 $

X4 = 170 ft2, y4= 270 000 $



Linear regression

   

   

 

 
       

• Assumptions:
• Linearity – interactions and 

nonlinearities need to be engineered
• Normality - outcome, given features 

follows normal distribution
• Homoscedasticity (constant variance) 

- the classic i.i.d assumption
• Independence – the classic i.i.d 

assumption
• Fixed features – no measurement 

errors assumed
• Absence of multicolinearity – 

correlated features break the 
interpretability
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How to interpret linear regression

• Interpretation of numerical features

• Interpretation of categorical features

• Feature importance
• "All other features remain the same"

We do not know the real error 
(noise), so we use MSE as an 
estimate. Nice video explaining 
this: Video.
Note: You need to get diagonal 
values of (XTX)-1, as this is 
covariance matrix.

https://www.youtube.com/watch?v=ZFtnvXlWo0E


How to interpret linear regression

• Confidence intervals

• Effect plots

• Explain single instance
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• OLS will give different results 
than gradient methods, because 
of normalization issues

• Multicolinearity can break the 
interpretability

• Model is not human-
interpretable when interactions 
and transformations are added
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Interpretability issues

• OLS will give different results 
than gradient methods, because 
of normalization issues

• Multicolinearity can break the 
interpretability

• Model is not human-
interpretable when interactions 
and transformations are added

Standarized features

OLS features

The coefficients of the linear regression model (let's denote 
them as βj) represent the expected change in the target 
variable Y for a one-standard-deviation increase in the 
predictor variable Zj, holding all other variables constant.
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Interpretability issues

• OLS will give different results 
than gradient methods, because 
of normalization issues

• Multicolinearity can break the 
interpretability

• Model is not human-
interpretable when interactions 
and transformations are added

Standarized features thata re highly 
correlated

The model may compensate for this redundancy by inflating the 
coefficients of the correlated features to capture the shared 
variance. Consequently, the weights can appear significantly higher 
than they would for less correlated features.



Interpretability issues

• OLS will give different results than 
not gradient methods, because of 
normalization issues

• Multicolinearity can break the 
interpretability

• Model is not human-interpretable 
when interactions and 
transformsations are added
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K-nearest neighbors

• Exaplain by example: the price of 
the house was estimated to 295 
000 $ because most similar 
houses had prices from a range 
250 000$ to 340 000 $

• Explain by explicitly providing K 
nearest neighbours for analysis

y1 = 340 000 $

y2 = 290 000 $

y3 = 250 000 $

y5 = 300 000 $ yn = 295 000



K-nearest neighbors issues

• Selecting K is always a 
problem

• What distance metric 
to use?

• What in case of 
hundreds of features?

• Problemin analysing 
such a large number 
of parameters

• Dimensionality curse

• It's local only
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such a large number 
of parameters

• Dimensionality curse
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• Interpreting categorical features

• Normalization issue

• Feature importance
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https://g ithub.com/sbobek/lux



Decision trees

AirTemp

Enjoy
Yes

Enjoy
No



Pros and cons

• Nonparametric models – they  
are not that perfect for 
forecasting

• Can overfit without proper 
regularization

• No need to 
normalize/standarize/scale

• No need to One-hot-encode

• Feature importancecan be 
obtained immediatelly
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Probabilistic graphical models



Probabilistic graphical models (PGM)

• Nodes represent variables

• Edges represent direct 
probabilistic interactions

• Different types of PGM
oBayesian entworks – acyclic, 

directed graphs
oMarkov models – undirected 

graphs

• Easy incorporate domain 
knowledge

• Popular in causality modelling

                                              

                 

                  

               

                          
                          

                              

             
             

             
             

             
             

                          
               

             
                                             

                          
               

             
                                               

                          
               

             
                                               

                          
               

             
                                             

             
             

             
             

                              

                          
                          

             
             

                              

             
             

                              

             
             

                                

             
             

             
             

                          
                                

                          
                              



Naive Bayes

                 

                                                                                                           

• Conditional independence

• Bayes rule

• Naive Bayes



Inference in Bayesian Networks

• Joint probability

• Reduction

• Marginals

• MAP

• Tools for that
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Note: In real-life examples exact inference is not an option (usually). 
Additionally, we need tools that will help us learn the structure, lenrn 
CPODs, manage large networks, etc.



Tools for BN Leanring and inference

• PGMPy

• CausalNEX

• DoWhy

• Pyro

• ProbLog

• ...

0.2::spam.
0.4::contains_word(money) :- spam.
0.5::contains_word(discount) :- spam.
0.7::contains_word(winner) :- spam.
0.3::from_unknown_sender :- spam.
0.1::contains_attachment :- spam.

0.6::contains_word(money) :- not(spam).
0.5::contains_word(discount) :- not(spam).
0.3::contains_word(winner) :- not(spam).
0.7::from_unknown_sender :- not(spam).
0.9::contains_attachment :- not(spam).

evidence(contains_word(money), true).
evidence(contains_word(discount), false).
evidence(contains_word(winner), false).
evidence(from_unknown_sender, true).
evidence(contains_attachment, false).
query(spam).
% Response:
% spam:   0.216
% There’s a 21.6% chance that emails with
% these features is a spam 

from sklearn.model_selection import train_test_split
train test = train_test_split(discretised_data, train_size=0.9, test_size=0.1, random_state=7) 
bn = bn.fit_node_states(discretised_data) 

bn = bn.fit_cpds(train, method="BayesianEstimator", bayes_prior="K2") 

from causalnex.inference import InferenceEngine
ie = InferenceEngine(bn) 

marginals_short = ie.query({"studytime": "short-studytime"}) 
marginals_long = ie.query({"studytime": "long-studytime"}) 
print("Marginal G1 | Short Studtyime", marginals_short["G1"]) 
print("Marginal G1 | Long Studytime", marginals_long["G1"]) 
---

Marginal G1 | Short Studtyime {'Fail': 0.2776556433482524, 'Pass': 
0.7223443566517477} 
Marginal G1 | Long Studytime {'Fail': 0.15504850337837614, 'Pass': 
0.8449514966216239}



Thank you for your attention!

https://geist.re
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