Inherently Interpretable models II

Szymon Bobek

Jagiellonian University 2024

https://geist.re

Chinese room

- Invented by John Searle (1980): Critique of Al's potential for true understanding.
- Thought Experiment Setup: A person manipulates Chinese symbols using instructions.
- Key Point: The person follows rules without understanding the language's meaning.
- Challenge to Strong AI: Machines can simulate but not truly comprehend language.
- Conclusion: Syntax alone is insufficient for real understanding or consciousness.
- Is Chinese room interretable/explainable?

Global model-agnostic explanations

Interpretability issues of additive models

- Feature transformations can break interpretability
- Multicolinearity can break the interpretability
- Feature interaction can break interpretability

The effect of a feature for linear regression represents the effect of a feature value on a prediction, assuming all other features are fixed

Partial dependence function?

Partial dependence function?

Fow to measure feature interaction?

- Partial dependence function
- H-statistic

$$\hat{f}_S(x_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_S, x_C^{(i)})$$

$$PD_{jk}(x_j, x_k) = PD_j(x_j) + PD_k(x_k)$$

$$\hat{f}(x) = PD_j(x_j) + PD_{-j}(x_{-j})$$

$$H_{jk}^{2} = \frac{\sum_{i=1}^{n} \left[PD_{jk}(x_{j}^{(i)}, x_{k}^{(i)}) - PD_{j}(x_{j}^{(i)}) - PD_{k}(x_{k}^{(i)}) \right]^{2}}{\sum_{i=1}^{n} PD_{jk}^{2}(x_{j}^{(i)}, x_{k}^{(i)})}$$

$$H_j^2 = \frac{\sum_{i=1}^n \left[\hat{f}(x^{(i)}) - PD_j(x_j^{(i)}) - PD_{-j}(x_{-j}^{(i)}) \right]^2}{\sum_{i=1}^n \hat{f}^2(x^{(i)})}$$

How to add interactions to linear model?

- We can add interactions manually
- We can use feature engineering tool to generate multiple features
- But this breaks the interpretability
- We can use decision trees
- We can use decision rules

Decision rules

What are decision rules

- **OneR** learns rules from a single feature. OneR is characterized by its simplicity, interpretability and its use as a benchmark.
- Sequential covering is a general procedure that iteratively learns rules and removes the data points that are covered by the new rule. This procedure is used by many rule learning algorithms
- **Bayesian Rule Lists** combine pre-mined frequent patterns into a decision list using Bayesian statistics. Using premined patterns is a common approach used by many rule learning algorithms.

Support of $[C \Rightarrow D] = P(C) \leftarrow$ This is different than in association rules

Confidence of
$$[C \Rightarrow D] = P(C|D) = \frac{P(C \cap D)}{P(C)}$$

Lift of $[C \Rightarrow D] = \frac{P(C \cap D)}{P(C) \times P(D)}$

Rules form sets. This does not imply any order in which they should be processed. That is why conflict-resolution techniques are used to determine which rule should be fired.

OneR

Discretize the continuous features by choosing appropriate intervals.

For each feature

- Create a cross table between the feature values and the (categorical) outcome.
- For each value of the feature, create a rule which predicts the most frequent class of the instances that have this particular feature value
- Calculate the total error of the rules for the feature.

Select the feature with the smallest total error.

- Equal-width discretization
- Equal-frequency discretization
- Discretization with clustering algorithm
- Discretization using decision trees (or EBM, or any other model that cuts continuotus values)
- The width of the bin is constant

Value

Equal Width Discretization of values

• Other

- Equal-width discretization
- Equal-frequency discretization
- Discretization with clustering algorithm
- Discretization using decision trees (or EBM, or any other model that cuts continuotus values)
- Other

The width of the bin is variable (hence overlapping) in the second plot

- Equal-width discretization
- Equal-frequency discretization
- Discretization with clustering algorithm
- Discretization using decision trees (or EBM, or any other model that cuts continuotus values)
- Other

Value

- Equal-width discretization
- Equal-frequency discretization
- Discretization with clustering algorithm
- Discretization using decision trees (or EBM, or any other model that cuts continuotus values)
- Other

In this example we assume that there are two classess, and that the class 1 is for values > 3

Generate OneR

location	size	renovated	value	location	value=low	value=medium	value=high
good	small	no	high	bad	3	2	0
good	big	yes	high	good	0	2	3
good	big	yes	high	size	value=low	value=medium	value=high
bad	medium	yes	medium	big	0	0	2
good	medium	partially	medium	medium	1	3	0
good	small	partially	medium	small	2	1	1
bad	medium	no	medium	repeveted	valua-low	voluo-modium	voluo-high
bad	small	no	low	renovated	value=low	value=medium	value=nign
had	modium	20		yes	1	1	2
bad		110	low	partially	0	2	0
Dad	small	yes	IOW	no	2	1	1

Generate OneR

Error = No Mistakes / All Predictions

location	size	renovated	value	location	value=low	value=medium	value=high
good	small	no	high	bad	3	2	0
good	big	yes	high	good	0	2	3
good	big	yes	high	size	value=low	value=medium	value=high
bad	medium	yes	medium	big	0	0	2
good	medium	partially	medium	medium	1	3	0
good	small	partially	medium	small	2	1	1
bad	medium	no	medium	renovated	value-low	value-medium	value-high
bad	small	no	low	voc			
bad	medium	no	low	yes	1		2
bad	small	yes	low	partially	0	2	0
				no	2	1	1

Sequential covering

Start with an empty list of rules (RList).

Learn a rule R

While the list of rules is below a certain quality threshold (or positive examples are not yet covered)

- Add rule R to RList.
- Remove all data points covered by rule R
- Learn another rule on the remaining data.

Return the decision list.

How to learn a rule? Decision trees revisited

- Decision trees can be used to extract rules
- There are many tree-based methods that have excellent performance on tabular data
- Can we use strengths of decision trees/decision rules of capturing the interactions and linear models' simplicity?
- Implementation in Python (RIPPER)

How to add interactions to linear model?

- We can add interactions manually
- We can use feature engineering tool to generate multiple features
- But this breaks the interpretability
- We can use decision trees
- We can use decision rules
- We can combine strengths of decision rules, trees and linear models

One-Hot-Encoding with rules/trees

We are not that much interested about the preediction, but in rules capturing interactions

$$\begin{split} r_1(x) &= (\text{petal_length_cm} < 2.45) \\ r_2(x) &= (\text{petal_length_cm} >= 2.45) \\ r_3(x) &= (\text{petal_length_cm} >= 2.45 \land \text{petal_width_cm} < 1.75) \\ r_4(x) &= (\text{petal_length_cm} >= 2.45 \land \text{petal_width_cm} >= 1.75) \end{split}$$

ensembles." The Annals of Applied Statistics. JSTOR, 916–54. (2008).

Lasso – solution to large rule set

Lasso and subgradients

Interpretation of RuleFit models

- The interpretation of the importance proposed in RuleFit is the absolute version of standarized predictor coefficient
- The standarized coefficient is measured in units of standard deviation
- We initially standarized the features, so we do not interpret the coefficients in terms of effect
- If we want, whe should scale them back

$$I_{j} = |\hat{\beta}_{j}| \cdot std(l_{j}^{*}(x_{j})) \qquad I_{j} = \frac{|\hat{\beta}_{j}|}{std(l_{j}^{*}(x_{j}))} \qquad l_{j}^{*}(x_{j}) = min(\delta_{j}^{+}, max(\delta_{j}^{-}, x_{j}))$$

$$I_k = |\hat{\alpha}_k| \cdot \sqrt{s_k(1 - s_k)} \quad I_k = \frac{|\hat{\alpha}_k|}{\sqrt{s_k(1 - s_k)}} \quad t_k = \sqrt{s_k(1 - s_k)}$$

This seems to be incorrect in the original paper, as the trained coefficents are already standarized

$$J_j(x) = I_j(x) + \sum_{x_j \in r_k} I_k(x) / m_k$$

 I_k the importance of the decision rules in which x_i appears, and m_k is the number of features constituting the rule r_k

$$J_j(X) = \sum_{i=1}^n J_j(x^{(i)})$$

Global importance of a feature

Explainable Boosting Machines

Gradient boosting (re)explainer

Gradient Boosting example

- One can easily see that in our case the ^{γm} is always the average of residuals
- In each step, the residual component is added to the main function
- It basicaly works as gradient descent, but in the featurevalues space, not parameter space

Want to learn more? Here is a nice set of videos (very beggining level): <u>Video</u>

Generalized Additive Models

 $g(E_Y(y|x)) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \to g(E_Y(y|x)) = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p)$

- GAMs are generalizations of linear models, where linear terms can now be nonlinear functions
- The question is how to learn the nonlinear functions?
- Splines are one of the solutions

Explainable Boosting Machines

- Combines idea of gradient boosting and GAMs
- Allows to include pairwise interactions in the model
- Is as efficient as blackbox gradient boosting models, but gives intelligibility
- It is one of very few models that is editable!

Explainable Boosting Machines

- Learning rate is very small, so the order of the features does not matter
- The features are selected in round-robin manner
- After model is fitted, the interactions are added
- The interactions are added automatically, by previously estimating their strength

Thank you for your attention!

https://geist.re