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Chinese room

behavior. But [ don't understand J
Chinese. This rule book is in English_/
L1

I'm just manipulating squiggles and \\——-———"
squoggles to produce Chinese language

.
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[Wheever or whatever is in that room
15 an intelligent Chinese speaker!]

Invented by John Searle (1980): Critique
of Al's potential for true understanding.

Thought Experiment Setug: A person
manipulates Chinese symbols using
instructions.

Key Point: The person follows rules
without understanding the language’s
meaning.

Challenge to Strong Al: Machines can
simulate but not truly comprehend
language.

Conclusion: Syntax alone is insufficient for
real understanding or consciousness.

Is Chinese room interretable/explainable?

Neural Networks are Decision Trees



https://arxiv.org/abs/2210.05189
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Interpretability issues of additive models

* Feature transformations can
break interpretability

* Multicolinearity can break the

 Feature interaction can break

interpretability
interpretability
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Feature effect

The effect of a feature for linear
regression represents the effect of a
feature value on a prediction, assuming
all other features are fixed




Partial dependence function?

1-way vs 2-way of numerical PDP using linear regression
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Partial dependence function?

1-way vs 2-way of numerical PDP using linear regression
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Fow to measure feature interaction?

 Partial dependence function
* H-statistic
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1-way vs 2-way of numerical PDP using linear regression
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1-way vs 2-way of numerical PDP using gradient boosting
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How to add interactions to linear model?

 \We can add interactions
manually

* We can use feature
engineering tool to generate
multiple features

* But this breaks the
interpretability

e We can use decision trees
 We can use decision rules

Partial dependence

250

200 A
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150

Add interactions by creating features
that are products of each other.

How to interpret that?

X = {.’13'1,332,. .
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1-way vs 2-way of numerical PDP using linear regression
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What are decision rules

] C:ciNeaN...N¢cy, D:diNdyN...Nd,
* OneR learns rules from a single feature.

OneR is characterized by its simplicity, c
mterﬁretablllty and its use as a LF THEN

benchmark.
° Sequential Covering IS d general Support of [C' = D] = P(C) < This is different than in association rules
procedure that iteratively learns rules
and removes the data points that are Confidence of [C = D] = P(C|D) = £EOD)
covered by the new rule. This procedure P(C)
is used by many rule learning | P(C' N D)
algorithms Lift of (€= DI = 55 pp)
* Bayesian Rule Lists combine pre-mined
frequent patterns into a decision list
using Bayesian statistics. Using pre-
mined patter‘ns is acommon approach Ruleshforlr(rj\ Eets. This do(jzs nhot impI?]/ any c:cllfder in V\I/hich they
1 1 should be processed. That is why conflict-resolution
Used by many rUIe Iearnlng algorlthms' techniques are used to determine which rule should be fired.




OneR

Discretize the continuous features by choosing appropriate intervals.

e Create a cross table between the feature values and the (categorical) outcome.

e For each value of the feature, create a rule which predicts the most frequent class
of the instances that have this particular feature value

e Calculate the total error of the rules for the feature.




Discretize continuous features

e Equal-width discretization

* Equal-frequency discretization
 Discretization with clustering

algorithm

* Discretization using decision
trees (or EBM, or any other
model that cuts continuotus
values)

e Other
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Discretize continuous features

e Equal-width discretization

* Equal-frequency discretization

 Discretization with clustering
algorithm

* Discretization using decision | The width of the bin is PEE PRI RS
trees (Or EBM’ Or any Other Varlalble (he)nceth Colored Histogram of Combined Gaussian Distributions by Bins
model that cuts continuotus | 2'c @PPIEIINENE I -
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Discretize continuous features

e Equal-width discretization
* Equal-frequency discretization
* Discretization with clustering
algorithm
* Discretization using decision We can discretize IR oieaﬁa.uf:mf B P @
treeS (Or EBM, Or any Other mUItIpIe Values atonce C_olored Histogram of Combined Gaussian Distributions by Bins
model that cuts continuotus i =t
values) : =
e Other 1] = 5
"l



Discretize continuous features

500 7

400 4

e Equal-width discretization

* Equal-frequency discretization

* Discretization with clustering
algorithm

i DiSCFEtizatiOn USing dECiSion In thlS example we Colored Histograr;:n.ofCombined Gaussian DistribTJtions by Bins
trees (or EBM, or any other assure that the;etsrfth ="
model that cuts continuotus | > "7 0> 2 DTS e
values)
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Generate OneR

good
good
good
bad
good
good
bad
bad
bad
bad

small
big

big
medium
medium
small
medium
small
medium

small

no

yes

yes

yes
partially
partially
no

no

no

yes

high
high
high
medium
medium
medium
medium
low
low

low

bad 3 2 0

good
medium 1 3 0
small
parﬁaHy 0 2 0

no 2 1 1



Generate OneR

Error = No Mistakes / All Predictions

bad 3 2 0

good small no high
good big yes high good 3
bad medium yes medium
good medium partially medium it 1 3 0
good small partially medium small
bad medium no medium
bad small no low
bad medium no low

partially 0 2 0
bad small yes low

no 2 1 1




Sequential covering

Data Step 1: Find rule
21 ©
Start with an empty list of rules (RList). N : A L — 4
L) B T S
Learn a rule R B
i

While the list of rules is below a certain quality

—_

threshold (or positive examples are not yet covered):

L
e Add rule R to RList. 21 3 ioa 2 5
L] A
¢ Remove all data points covered by rule R 1 gy | % | 44 1 24
ini q o Lo 2 A ¥ o Lo 2
* Learn another rule on the remaining data. X o A° Q. p | X .
0 A. ¢ ° e®e - A 0 A g ° %o
= Lo © ..“!‘ Ao E ah0 €
.. . 14 ‘o.Ao Te 14
Return the decision list. ey L 4
-24 24
3 2 1 0 1 2 3 2 1




How to learn a rule? Decision trees revisited

* Decision trees can be used to

m extract rules
| l = * There are many tree-based
| 1
P — methods that have excellent
P performance on tabular data
| — =| < Can we use strengths of decision
e [ = trees/decision rules of capturing
e\ the interactions and linear

models' simplicity?

* Implementation in Python
(RIPPER)
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How to add interactions to linear model?

e \We can add interactions
manually

* We can use feature engineering
tool to generate multiple
features

e But this breaks the
interpretability

 We can use decision trees
e \We can use decision rules
* We can combine strengths of

Partial dependence

decision rules, trees and linear

models

Add interactions by creating features
that are product of each other.

How to interpret that?

X = {331,332,. .

T

L Tnt — {rire, v1 23, . ., T T}

1-way vs 2-way of numerical PDP using linear regression
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One-Hot-Encoding with rules/trees

petal_length_cm
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9.26%
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We are not that much
interested about the
preediction, but in rules
capturing interactions

r1(z) = (petal_length_cm < 2.45)

ro(x) = (petal length_cm >= 2.45)

rs(z) = (petal length_cm >= 2.45 A petal width_cm < 1.75)
r4(x) = (petal length_cm >= 2.45 A petal width_cm >= 1.75)

Number of terminal nodes in a
binary tree of depth N is 2N

We can get more trees:
number of rules we can
generate from M trees
with t,, terminal nodes

T

K:iﬂtm—l)

m=1



Linear model of rules and variables

K p
Mathematical version f(x) = BO + Z @krk(x) —+ Z lej (acj)
of OHE of rule —1 = 196 5 196
N +
9; 5
a
r (x) = I(x: € s; () — LT (o Normalization term to give all the linear terms same prior
m(®) jjel;[ ( ! Jm) () =04 ZJ (xj)/Std(lj (7)) influence as a typical rule
re(z) < ()t l;f(xj) = min((S;-F, max(&;, xj)) Removing outliers, by clipping values with quantiles

N—oo support drawn from uniform distribution

lim {% Z t (Sk)} = 0.4, there s5 ~ U(O, 1)) Average standard deviation of a rule with

Scale of a rule (standard deviation). It's calculated as for binomial

tr = v/sp(l —s N .
k k( k) distribution, because the rule terms are defined as OHE (0 or 1)

N

1
Sp = — E e T; Support of a rule
M N — ( Z)
1=
K=Y 2(t, —1)
m=1
n
K 317 = : : ORFI0
(&} {BY0) = argmingayu gy > Ly™, f(27))
Number of parameters used in this optimizaiton i—1
function can grow very fast. This is against the K D
interpretability!
+ A (D lewl + D18
k=1 j=1 Friedman, Jerome H, and Bogdan E Popescu. “Predictive leaming via rule

ensembles.” The Annals of Applied Statistics. JSTOR, 916-54. (2008).



Lasso — solution to large rule set



Lasso and subgradients

: >
XO @J(LASSO)
8J(0) 1 o~ |& ) el
V) 0, (7D — @)z - Al v
P
— A ifg, <0 0, = +2 ifp; > 2
1 1 2N J j P T3 pj=3
NPTl [ 5] if6;=0 0;=40;=0 if p; €< —%;3 >
Pt it 6; >0 0j=—pj—5 ifp<—3

Q Optimal solution when gradientis O ? ;




Interpretation of RuleFit models

: : : B,
* The interpretation of the L= 1Bt sty — L= Std('l;('xj)) I3 () = min(67, maz (55, 7))
importance proposed in RuleFit is
the absolute version of standarized & _
. o 1= OV ak\l —S%) k= s (1 — 5 ) by = Sk(l - Sk)
predictor coefficient (1= s

e The standarized coefficient is

measured in units of standard i . .
. 4. is seems to be incorrect in the
deviation original paper, as the trained
e \We initia”y standarized the coefficents are already standarized
features, so we do not interpret
the COeff|C|entS |n terms Of effeCt Ik the importance of the decision rules in
Ji(z) = I;(x) + Z I(x) /my which X; appears, and m, is the number of
® If we Wa nt’ Whe Should Scale them T €T features constituting the rule r,
back ) |
J;(X) = Z Jj(az(i)) Global |:c\;:i>l::2nce ofa




Explainable Boosting Machines




Gradient boosting (re)explainer

n Initialize the first model with constant value. It happens to be L(yi F(l’l)) _ 1 [yl . F(:El)]Q
Step 1: FO(;,;) = arg min Z L(yz., 7) average. Try it — calculate gradient, make it equal zero, compute ’ 2
Y i—1 constant
Step 2: For m=1— M repeat: {aL(yi,F(%))}
OF(zi) | pay=pn ()
OL(y;, F(%))} 2
Tim = — fore=1,...,n Calculate pseudo-residuals =y — F(x)] -1 =y — F(x.
" [ OF (x;) Fe)=Fo_1(2) 5 [y ()] Yi ()
Train model hm(ac) to predict pseudo-residuals Basically use dataset: {(J:Z, Tim) by .
25 — FO(X)
— n=y-—"Folx)
n 20
. Solve simple 1D optimization problem
Ym = argvmln Z L (yz, Fm—l(xi) + ’Yhm(ﬂfz)) with respect to Vm 15 m M
=1 >10 I ﬁ T
Update model by adding gradient of ﬂ
Fo(x) = Fp1() + Ymhm(x) residuals to the previous guess. 5
In practise the sum is modified °
by the learning rate parameter. 0 20 0 60 80 100
. Fyl(x
StEp 3: () Here the learning rate is 1 X
Return




Gradient Boosting example

Residuals of iteration 1
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Residuals of iteration 2
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Predictions of iteration 0

40

X

— Fo(x)
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o
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Predictions of iteration 1
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80

Predictions of iteration 2
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80

— n=y-F)

— n=y—-Fx)

100

One can easily see that in our
case the is always the average
of residuals

In each step, the residual
component is added to the main
function

It basicaly works as gradient
descent, but in the feature-
values space, not parameter
space

Want to learn more? Here is a
nice set of videos (very
beggining level): Video



https://www.youtube.com/watch?v=3CC4N4z3GJc&list=PLc-A_ClQmXKDlVbr9V3VhDZC5jJsPBN3Q&index=3

Generalized Additive Models

9(Ey (ylz)) = Bo + Brar + ... Bpxp —  g(Ey(y|z)) = Bo + fi(x1) + fa(x2) + ...

* GAMs are generalizations of
linear models, where linear
terms can now be nonlinear
functions

* The question is how to learn
the nonlinear functions?

* Splines are one of the
solutions
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Explainable Boosting Machines

* Combines idea of gradient
boosting and GAMs 2 U o N

* Allows to include pairwise

N
interactions in the model Gl A\ AT T e
N

* |s as efficient as blackbox ter, N
gradient boosting models,
but gives intelligibility

* It is one of very few models

that is editable! i@\ﬂ% %”H‘/X > res




Explainable Boosting Machines

* Learning rate is very small, fif,
so the order of the features -
B | [ [N e [N
does not matter 6\ % /X 6\
. Ilter — — res — — res — — res — —
* The features are selected in .
round-robin manner Iter; O\ﬂ% @\%H />\ — res — @\ -
e After model is fitted, the
interactions are added
* The interactions are added N ~ 2N N
. . tern - — res — — res — — res — -
automatically, by previously

estimating their strength

B+ HB+rl++Bl=

»
»




Thank you for your attention!
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