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DNN are blackboxes, but excellent blackboxes

* DNN can be treated as any
other Balckbox model and
analyzed with all sorts of
model-agnostic approaches
(SHPA, PDP, LIME)

 There are plenty of methods
that were crafted for DNN to
understand or debug their
operation

* Thereis also a new trend in
building self-explainable DNN
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Class activation maps (CAM)

w

‘ —
O\l

\ Australian
O W, ‘ terrier
O/

1
—_—

<200
<Z00
< Z 00
<Z00

S—

Class Activation Mapping

9 * iy
B ‘ s

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the clas:
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.
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B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, "Learning Deep Features for Discriminative

Localization," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,

NV, USA, 2016 pp. 2921-2929.

It exploits locality of CNN arhcitecture

It uses latent representation from last
CNN layer as class activation maps

Requires modifications to the
architecture, i.e. injecting Global
Average Poolmg (GAP) at the end

Requires re-training of GAP (with
frozen weights of CNN layers)

It might be to restrictive for more
complex tasks than simple
classification

In fact, we are explaining only the last
feature map



GradCAM
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Motivation: come up with CAM-like
asrchitecture that not restricts the
architecture

It also uses features maps produced
by the last CNN layer of the model
IN GradCAM we base on gradients, presossasnasaanacs :
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GradCAM

Motivation: come up with CAM-like
asrchitecture that not restricts the
architecture

It also uses features maps produced
by the last CNN layer of the model
IN GradCAM we base on gradients,
not weights

Instead of GAP, we use
backpropagation to obtain partial
derivatives

Positive gradient contribute to the
given class

We apply average pooling to obtain
the weights for feature map

The scores are passed to RelLU to cut
all negativevalues
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(a) Original Image (b) Guided Backprop ‘Cat’  (c¢) Grad-CAM ‘Cat’  (d)Guided Grad-CAM ‘Cat’ (e) Occlusion map ‘Cat’ (f) ResNet Grad-CAM *Cat’
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(g) Original Image  (h) Guided Backprop ‘Dog” (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map ‘Dog’ (1)ResNet Grad-CAM ‘Dog’

K stands for
k feature maps

global average pooling K-th feature map
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gradients via backprop

Total number of pixels in feature map

R. R. Selvaraju, M. Cogswell, A. Das, R.Vedantam, D. Parikh and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 618-

626, doi: 10.1109/ICCV.2017.74.






DNN are blackboxes, but excellent blackboxes

Perspective | Published: 13 May 2019

Stop explaining black box machine learning models for
high stakes decisions and use interpretable models
instead

Cynthia Rudin &

Nature Machine Intelligence 1,206-215 (2019) | Cite this article

71k Accesses | 2689 Citations | 479 Altmetric | Metrics

[ i I preprint version of the article is available at arXiv.

Abstract

Black box machine learning models are currently being used for high-stakes decision making
throughout society, causing problems in healthcare, criminal justice and other domains.
Some people hope that creating methods for explaining these black box models will alleviate
some of the problems, but trying to explain black box models, rather than creating models
that are interpretable in the first place, is likely to perpetuate bad practice and can potentially
cause great harm to society. The way forward is to design models that are inherently
interpretable, This Perspective clarifies the chasm between explaining black boxes and using
inherently interpretable models, outlines several key reasons why explainable black boxes
should be avoided in high-stakes decisions, identifies challenges to interpretable machine
learning, and provides several example applications where interpretable models could

potentially replace black box models in criminal justice, healthcare and computer vision.
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Figure 1. Decision Tree for a 2-layer ReLLU Neural Network



ProtoPNet

Leftmost: a test image of a clay-colored sparrow

Second column: same test image, each with a
bounding box generated by our model
-- the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our
algorithm

Fourth column: source images of the prototypical
parts in the third column

Rightmost column: activation maps indicating how
similar each prototypical part resembles
part of the test bird

looks like

looks like

looks like

C. Chen, O.Li,C. Tao, A. J. Barnett, J. Su, and C. Rudin, ‘Thislooks like that: deep learning forinterpretableimage
recognition’, in Proceedings of the 33rd International Conference on Neural Information Processing Systems,
Red Hook, NY, USA: Curran AssociatesInc., 2019, pp. 8930-8941.



ProtoPNet o, (2) = M cpuches(a) 108 (112 = P51 + 1)/ (12 — 513 + €)

3.954 5.030 | Black footed albatross
5.443 | Indigo bunting
1.447 4.738 | Cardinal
° 27.895| Clay colored sparrow
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2.617 5662 | Common yellowthroat
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C. Chen, O.Li,C. Tao, A. J. Barnett, J. Su, and C. Rudin, ‘Thislooks like that: deep learning forinterpretableimage
recognition’, in Proceedings of the 33rd International Conference on Neural Information Processing Systems,
Red Hook, NY, USA: Curran AssociatesInc., 2019, pp. 8930-8941.



ProtoPNet o, (2) = M cpuches(a) 108 (112 = P51 + 1)/ (12 — 513 + €)

* Main--Trainthe prototypes,
with CNN fixed, and custom loss
function

e Push —to visualize, replace
prototype with patches closest
to prototype

* Fine-tunethe last layer

Similarity score

.
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C. Chen, O.Li,C. Tao, A. J. Barnett, J. Su, and C. Rudin, ‘Thislooks like that: deep learning forinterpretableimage
recognition’, in Proceedings of the 33rd International Conference on Neural Information Processing Systems,
Red Hook, NY, USA: Curran AssociatesInc., 2019, pp. 8930-8941.
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Prost and cons of ProtoPNet

* Pros * Cons

* |t is explainable mdel (no post-hoc * Training is complex (warm-up,
operations) main, push fine-tuning)

* It is proven to work on fine- * Not suitable for not fine-
grained datsets (all categories are grained datasets (ProtoPNet still
similar, e.g. birds spieces, car does not work on ImageNet)
models, etc.) * Large number of prototypes

» Classes cannot share prototypes



Self-explainable Neural Netowrks (SENN)

The authors use anideaof a
concept (e.g. prototype)

They introducerelevance
component that ensures that the
input can be interpreted

through concepts and relevance
scores

The aggregater is an additive,
interpretable funcion (e.g. linear)

Ly(f(x),y) + ALo(f) + ELA (2, 7)
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D. Alvarez-MelisandT.S. Jaakkola, ‘Towards robust interpretability with self-explaining neural networks’, in
Proceedings of the 32nd International Conference on Neural Information Processing Systems, in NIPS’18. Red Hook,
NY, USA: Curran Associates|Inc., Dec. 2018, pp. 7786—7795.
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Multi-Task Learning for Explainability




Loss with upweighted instance z

Influential instances
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Model parameter

type

Actual loss

Quadratic expansion

Updating the model parameter (x-axis)
by forming a quadraticexpansion of the
loss around the current model
parameter, and moving 1/n intothe
direction in which the loss with
upweighted instance z (y-axis) improves
most.

This upweighting of instancez in the loss
approximatesthe parameter changes if
we delete z and train the model on the
reduced data.



AIRA Seminar (this Thursday)

2024-01-11

Speaker: Arkadiusz Tomczyk, Assistant Professor @ Lodz University of Technology
Title: Interpretable components and graph neural networks

Abstract: In the presentation graph neural networks will be discussed. They will be compared both to classic and deep learning
techniques (including convolutional neural networks and transformers). Their possible areas of applications will be illustrated by
prediction of chemical molecules' properties and structured image analysis. In both cases the explainability aspects will be
emphasized. In particular, when it comes to images, it will be argued that proper representation of their content with inferpretable
components may lead to additional benefits (better communication with domain experts).

Biogram: Arkadiusz Tomczyk received the MSc degree in computer science in 2002 and the PhD with honours in computer
science in 2011 from the Faculty of Technical Physics, Information Technology and Applied Mathematics of the Lodz University of
Technology, Poland. Since 2002 he has been employed in the Institute of Information Technology of the Lodz University of
Technology. His research experience covers image processing and analysis, especially active contour methods, as well as
patiern recognition and machine learning technigues. From 2013 to 2017 he was a principal investigator in research grant
focused on Cognitive Hierarchical Active Partitions, a method combining active contour approach with structural representation
of image content. This project was supported by National Science Centre, project no. 2012/05/D/ST6/03091. Currently he
actively participates in projects supported by Naftional Centre for Research and Development and his scientific interests focus on
machine learning technigues (convolution neural networks, transformers, graph neural networks) applied to analysis of images
and graphs. He is an author and co-author of around 50 journal papers, book chapters and conference confributions.



Thank you for your attention!
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