courses:wshop:topics:tematy2024wiosna

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
courses:wshop:topics:tematy2024wiosna [2024/03/01 15:48] – [[KKT] HWR/HTR state-of-the-art evaluation] kktcourses:wshop:topics:tematy2024wiosna [2024/03/08 12:17] (current) – [[SBK] OpenML dataset creation script for Meta-Learning] admin
Line 4: Line 4:
  
   * **Student:** Przemysław Pawlik   * **Student:** Przemysław Pawlik
-  * **Namespace in the wiki:** FIXME [[..:projects:2024:iiif:]]+  * **Namespace in the wiki:** [[..:projects:2024:iiif:]]
   * **The goal of the project:** The goal of this project is to combine IIIF technology with a knowledge graph to provide metadata-rich descriptions via IIIF stack of technology   * **The goal of the project:** The goal of this project is to combine IIIF technology with a knowledge graph to provide metadata-rich descriptions via IIIF stack of technology
   * **Technology:** Semantic Web, Python/Java   * **Technology:** Semantic Web, Python/Java
Line 23: Line 23:
  
   * **Groups and namespaces in the wiki:**   * **Groups and namespaces in the wiki:**
-    * Maciej Baczyński: FIXME [[..:projects:2024:yolo1:]] +    * Maciej Baczyński: [[..:projects:2024:yolo1:]] 
-    * Aleksandra Jaroszek, Maciej Struski: FIXME [[..:projects:2024:yolo2:]]+    * Aleksandra Jaroszek, Maciej Struski: [[..:projects:2024:yolo2:]]
   * **The goal of the project:** Verify whether state-of-the-art object detection models are usable for documents (manuscripts, printed documents, music scores, etc)   * **The goal of the project:** Verify whether state-of-the-art object detection models are usable for documents (manuscripts, printed documents, music scores, etc)
   * **Technology:** Python, machine learning, data analysis   * **Technology:** Python, machine learning, data analysis
Line 33: Line 33:
 ==== [KKT] HWR/HTR state-of-the-art evaluation ==== ==== [KKT] HWR/HTR state-of-the-art evaluation ====
  
-  * **Student:** Kamil Butryn +  * **Groups and namespaces in the wiki:*
-  **Namespace in the wiki:** FIXME [[..:projects:2024:hwr:]]+    * Kamil Butryn: [[..:projects:2024:hwr1:]] 
 +    Magdalena Gancarek, Klaudia Korczak: [[..:projects:2024:hwr2:]]
   * **The goal of the project:** Explore and compare state-of-the-art handwriting recognition models/methods and benchmark datasets   * **The goal of the project:** Explore and compare state-of-the-art handwriting recognition models/methods and benchmark datasets
   * **Technology:** Google Scholar/ResearchGate/reading :), Python, machine learning, data analysis   * **Technology:** Google Scholar/ResearchGate/reading :), Python, machine learning, data analysis
Line 40: Line 41:
   * **Links:**   * **Links:**
     * [[wp>Handwriting_recognition|Handwriting recognition]]     * [[wp>Handwriting_recognition|Handwriting recognition]]
 +    * [[https://readcoop.eu/transkribus/public-models/|Public models @Transkribus]]
  
 ==== [KKT] Ontology for the SOLARIS synchrotron ==== ==== [KKT] Ontology for the SOLARIS synchrotron ====
Line 65: Line 67:
 ==== [KKT] Support in BIRAFFE3 experiment ==== ==== [KKT] Support in BIRAFFE3 experiment ====
  
-  * **Student:** Agnieszka Felis, FIXME Kolejne osoby mile widziane :) +  * **Student:** Agnieszka Felis, Mikołaj Golowski 
-  * **Namespace in the wiki:** FIXME [[..:projects:2024:biraffe3:]]+  * **Namespace in the wiki:** [[..:projects:2024:biraffe3:]]
   * **The goal of the project:** Support in BIRAFFE3 experiment   * **The goal of the project:** Support in BIRAFFE3 experiment
   * **Technology:** Python, data analysis   * **Technology:** Python, data analysis
Line 100: Line 102:
  
   * **Student:** Jan Malczewski   * **Student:** Jan Malczewski
-  * **Namespace in the wiki:** FIXME [[..:projects:2024:emolatent:]]+  * **Namespace in the wiki:** [[..:projects:2024:emolatent:]]
   * **The goal of the project:** Create a prediction model that maps features into artificial X-dimensional space. Then, map this space into actual emotions/labels space   * **The goal of the project:** Create a prediction model that maps features into artificial X-dimensional space. Then, map this space into actual emotions/labels space
   * **Technology:** Python, machine learning, data analysis   * **Technology:** Python, machine learning, data analysis
Line 187: Line 189:
 ==== [SBK] OpenML dataset creation script for Meta-Learning ==== ==== [SBK] OpenML dataset creation script for Meta-Learning ====
  
-  * **Student:** +  * **Student:** FIXME
   * **Namespace in the wiki:** [[..:projects:2023:openmlds:]]   * **Namespace in the wiki:** [[..:projects:2023:openmlds:]]
   * **The goal of the project:** Prepare a script that will build meta-learnign dataset out of OpenML logs   * **The goal of the project:** Prepare a script that will build meta-learnign dataset out of OpenML logs
Line 200: Line 202:
 ==== [SBK] Time-SHAP implementation ==== ==== [SBK] Time-SHAP implementation ====
  
-  * **Student:** FIXME +  * **Student:** Kamil Piskorz 
-  * **Namespace in the wiki:** [[..:projects:2023:FIXME:]]+  * **Namespace in the wiki:** [[..:projects:2023:windowshap:start]]
   * **The goal of the project:** The goal is to improve the SHAP XAI algorithm to work more efficiently on time-seris data   * **The goal of the project:** The goal is to improve the SHAP XAI algorithm to work more efficiently on time-seris data
   * **Technology:** Python, Keras/PyTorch   * **Technology:** Python, Keras/PyTorch
Line 210: Line 212:
  
 ==== [SBK] Red-Teaming with XAI ==== ==== [SBK] Red-Teaming with XAI ====
-  * **Student:** FIXME +  * **Student:** Jakub Samel 
-  * **Namespace in the wiki:** [[..:projects:2023:FIXME:]]+  * **Namespace in the wiki:** [[..:projects:2023:redteam:start:]]
   * **The goal of the project:**    * **The goal of the project:** 
   * **Technology:** Python, Keras/PyTorch   * **Technology:** Python, Keras/PyTorch
Line 219: Line 221:
     * Tabular DS: https://www.kaggle.com/datasets/danofer/compass     * Tabular DS: https://www.kaggle.com/datasets/danofer/compass
     * Image DS: take ready-to-use model like and analyze red-team it.     * Image DS: take ready-to-use model like and analyze red-team it.
 +
 +
 +==== [SBK] Dimensionality reduciton to speedup LUX ====
 +  * **Student:** FIXME
 +  * **Namespace in the wiki:** [[..:projects:2023:FIXME:]]
 +  * **The goal of the project:** The goal is to improve LUX software to perform calculation in reduced dimensionality space
 +  * **Technology:** Python, Keras/PyTorch
 +  * **Description:**  LUX (Local Universal Rule-Based Explainer) is an XAI algorithm that produces explanations for any type of machine-learning model. It provides local explanations in a form of human-readable (and executable) rules, but also provide counterfactual explanations as well as visualization of the explanations. It creates explanations by selection of neighborhood data-points which is computationally intensive as it is based on clustering algorithms. In high dims spaces this is inefficient and has limited practical usage due to dimensionality curse. The goal would be to add dimensionality reduction step to the process and test efficiency improvements.
 +  * **Links:**
 +    * https://github.com/sbobek/lux
 +    * https://arxiv.org/abs/2310.14894
 ==== [FIXME] Template ==== ==== [FIXME] Template ====
  
  • courses/wshop/topics/tematy2024wiosna.1709308097.txt.gz
  • Last modified: 14 months ago
  • by kkt